Minutes of SMR #2 Study Group 3.26 IAC 2017 Tuesday 26 September 2017 City Room #3, Adelaide, SA

Meeting was originally scheduled in City Room #4, but, a legal session extended well past its scheduled completion time, so the meeting was moved to City Room #3.

11 people attended:

Roger X. Lenard	rxlenard@gmail.com	USA	LPS
Peter Swan	dr-swan@cox.net	USA	ISEC
Melissa Mirino	melissa.mirino@community.isunet.edu	ı Italy	
Michael Simpson	mkscms@gmail.com	USA/IE	Secure World Found
Susan McKenna Lawlor	r STIL@mu.ie	IE	STIL
Austin Dula	austin@dula.com	USA	Heinlein Prize Trust
Art Dula	art@dula.com	USA	Heinlein Prize Trust
Kyle Acierno	K-acierno@ispace.inc	Canada	iSpace
Chris Johnson johnso	n.c@gmail.com	USA	SWF, IISL, ISU
Bruckner Hightower	buckhightower@gmail.com	USA	Heinlein Prize Trust
Konstantin Rayknol		RUS	Tsnimash

Status of progress discussed, briefing attached. Plans for future activities discussed. All participants have clear idea of path forward.

Roger X. Lenard, SG Chair

Space Mineral Resources #2: IAA Study

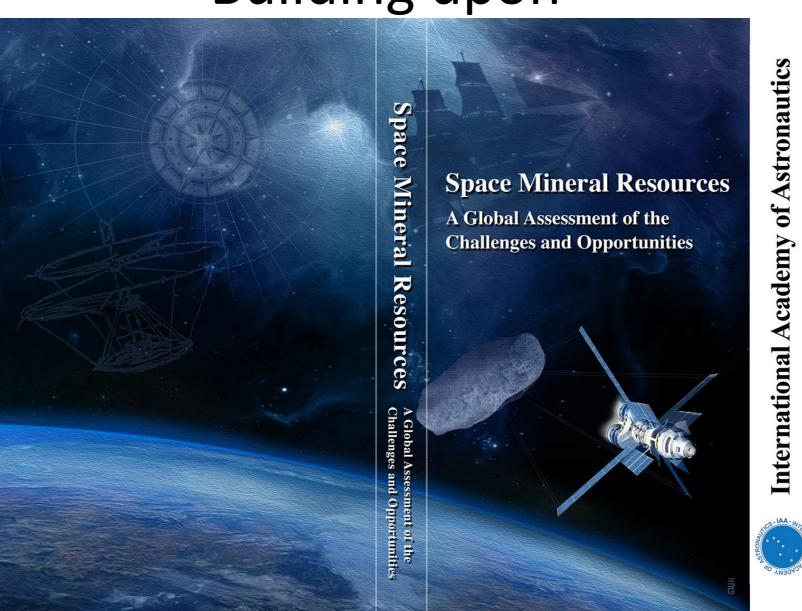
Peter A. Swan, Ph.D. Member, International Academy of Astronautics President, Member BofD's, International Space Elevator Consortium Industry Professor, Technical University of Delft and Stevens Institute of Technology

Roger Lenard, Member, International Academy of Astronautics, President, Little Prairie Services

Arthur Dula, Member, International Academy of Astronautics, Trustee, Robert Heinlein Foundation

> Note: many images from Heinlein Prize Trust and Excalibur Exploration 9/26/2017

> > Image from IAA Study



Space Mineral Resources #2: IAA Study-Agenda

- Welcome
- Sign-up sheet
- Review of status
- Supplemental information

Building upon

ANOLI STRATE STR

9/26/2017

Space Mineral Resources II, Economic Considerations, Benefits to Humanity and Legal Analysis

Chapter Outline and Writing Assignments

EMIE INT

5

Chapter	Торіс	Lead Author	Co-Author	Comments 🖌 🖈
ExSum	ExSum, Preface,	Dula	Swan	
1	Introduction, Past &	Swan	Lenard	3JANO
	Present			
2	Vision, the Why,	Simpson	Swan	UN sustainable Goals
	Benefits			
3	Arch Approach, the	Swan		
	How			
4	Case Studies	Lenard	Mirino	
4a	Commercial viability	Blair	Lenard/Mirino	
	lunar regolith			
4b	Commercial viability	Lenard	Swan	
	Propellants and			
	habitats on Mars			
4c	Commercial viability	Lenard	TBD	
	of propellant in LEO			
4d	Commercial power	Lenard		Draft finished [April 28 th]
	distribution for			
	Mars			
5	Legal – non-	Dula	Zheng-China*	
	traditional			
	commercial			
6	Conclusions	Swan	Lenard	
	Recommendations			
	Appendix			

Membership

- SG Chair: Art Dula USA
- SG Vice Chair: Zhenjun Zhang China
- Secretaries: Pete Swan/Roger Lenard
- Michael Simpson USA
- Susan McKenna Lawlor: Ireland
- Melissa Mirino: Italy
- G.S. Sachdeva: India
- R Herzfeld: USA
- Salem Al-Marri: UAE
- Brad Blair: USA
- Catherine Conley: USA
- Christophe Bonnal: France
- Bernd Hoffer: UAE

Image from 100 YSS

Schedule

- Create Study Group gain approval IAC Israel Meeting [Oct 2015]
- First Meeting by Paris 2016
- Form Team by Paris 2016
- Create path to follow by Paris March 2016
- Work on study March 2016 to October 2018
- Develop study report Mar 18 Dec 18
- Joint IAA-ISDC workshop in May 2018
- Final study report approved by commission III Mar 2019
- Academy Level peer review and then publishing by Sept 2019
- Plenary at IAC and discuss findings in technical sessions

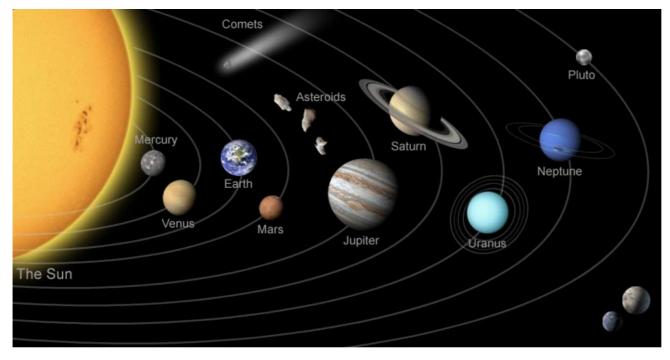


Image from 100 YSS

Chapter Status

- Introduction: Pete
- Benefits: Mike or Pete
- Legal
- Economic Case Studies
 - Power as a resource complete in draft
 - Mars habitat and propellant in work
 - Lunar resources in work
 - Asteroids TBD
- Legal
- Conclusion

Chapter 2 Report

• Benefits: Mike or Pete

Chapter 3 Legal

- The 2015 study presented the legal situation as of the middle of 2015. After it circulated, and in 2017 became the first IAA study to be published in Chinese, much discussion occurred.
- The purpose of this second study is to summarize the discussion that occurred after the last report with specific attention to national authorization and supervision of nongovernmental activities in outer space, for example:
 - 2015 US Law "Commercial Space Launch Competitiveness Act"
 - 2017 US draft law on commercial space activities.
 - 2017 Luxemburg Law "The Luxembourg Space Law,"
 - Multiple Nations are considering similar legislation

Chapter 4 Lunar Resources

ADDATES 4 0 3 JENOITANS

E.1AA.

- To make an economic case:
 - Resource must be available
 - Compete cost-wise with Earth delivery or from another source
 - Includes cost of extractive and beneficiating infrastructure

Cost Benefits of Lunar SMR						
Resource	Lunar Concentration	Extraction Method	Beneficiation Cost (\$/kg)	Delivery Cost From Earth (\$/kg)		
Aluminum						
Iron						
Oxygen						
Titanium						
Carbon						
Nitrogen						

Chapter 5 Conclusion

• TBD