

IAA SG3.28

Strategy of Large-scale and Low-cost Access to Space in Future

LU Yu, Giuseppe Reibaldi

WANG Xiaowei

Adelaide, Australia

Sep. 2017

Goal:

Identify the requirement of access to space and exploration payload in future, and required key technologies and strategy to meet this kind of requirement.

Sep.2016 The Study Started

Mar. 2017 The Study Group and Report Outline Finished Sep.2017 The Preliminary Report Finished

1. Introduction

- 2. Demand and technology analysis of large-scale access to space in future
- ✓ Mission demand analysis of access to space (aiming at 2030, 2050)
 - ➢ low-earth orbit mission
 - > Robotic and Human deep space missions
 - Construction of space infrastructure, such as, space solar power station
 - > On-orbit service and maintenance
 - Space tourism
- ✓ Limitation analysis of current LV technologies for access to space

- ✓ Limitation analysis of current LV technologies for access to space
 - Most launch vehicles carry on specific missions. Some capabilities of launch vehicles are not fully used.
 - The period of launch service for a general ELV is more than 2 weeks which is too long for consecutive missions. Moreover, the number of people involved in the launch service is also large.
 - An ELV is always designed for a distinctive orbit. The adaptability for multi-mission needs to be increased.
 - The launch service price is expensive.

✓ Method for low-cost access to space

Launch vehicles

- Low-cost design of expendable launch vehicles
 - (1) Low-cost electrical system design
 - (2) Low-cost structure design technology
 - (3) Low-cost propulsion system design technology
 - (4) New launching technology
 - (5) Others
- Reusable design
 - (1) Reusable Space Transportation Systems Based on ELVs
 - (2) Lifting-Body Configuration Launch Vehicles
 - » Rocket Powered Reusable Launch Vehicles
 - » Combined-Cycle Powered Reusable Launch Vehicles

Interface standardization

- Other New concepts
 - Depot, Electromagnetic propulsion launch vehicle, Space Elevator

- ✓ Launch vehicles
 - Low-cost design of expendable vehicles
 - The low cost design technology of launch vehicle configuration
 - » (1) Low cost hybrid launch vehicle configuration
 - » (2) Low cost serialized LV configuration and the modular design technology
 - The high reliable electrical system integration design in launch vehicle
 - » (1) Integration power supply and distribution technology
 - » (2) Modular design technology in electrical system
 - The high reliable electrical products and test technology based on COTS
 - » (1) device procurement and screening control
 - » (2) heat-electromechanical design in application environment
 - » (3) COST device error detection and tolerance
 - The improvement of active serviced launch vehicle
 - » (1) launch vehicle combined lots production;
 - » (2) components commercialized design;
 - » (3) advanced techniques application (3d print for example) and long-range fast test and launch technology

- ✓ Launch vehicles
 - Low-cost design of expendable vehicles
 - Reusable design
 - (1) Rocket Powered Reusable Launch Vehicles
 - » Systems overall design and optimization technology
 - » Aerodynamic configuration and characteristics design technology
 - » Thermal protection technology
 - » High precision in-orbit and re-entry integration GNC technology
 - » Light-weight structure technology
 - (2) Combined-Cycle Powered Reusable Launch Vehicles
 - » Wide-scope vehicle body and propulsion integrated and strong coupling design technology
 - » Combined-cycle engine powered adjustable air intake and exhaust technology
 - » High flexibility and multi-model engine combustion organization technology
 - » Wide speed rage inner and outer flow integrated configuration design technology
 - » Large-scale and light-weight lifting body vehicle aerothermo-elasticity technology
 - » Advanced guidance technology with strong coupling among propulsion, aerodynamic and flight path
 - » Vehicle and propulsion integrated control technology

Preliminary Report

International Academy of Astronautics

- New concepts
 - Depot
 - The cryogenic propellant in-space storage
 - In-space propellant transfer
 - Cryogenic tank pressure control
 - Assembly attitude control for propellant refueling
 - Liquid sloshing and large structure coupled dynamic modeling and control
 - Power supply and management
 - Electro-magnetic launch vehicle
 - analysis of gronud effect of electromagnetic propulsion launch vehicle
 - accurate takeoff control technologies
 - high power, high capacity <u>pulse power supply</u> technologies
 - high speed, high power linear motor technologies
 - electromagnetic compatibility technologies
 - The optimization design of Electromagnetic propulsion launch vehicle's aerodynamic shape

- Space Elevator
 - Optimization design technique for the overall parameters of Space Elevator system
 - Dynamic design and analysis technology of Space elevator system
 - Space task mode and orbit design technology based on Space Elevator system
 - Design technology of Space Elevator tether material
 - Space Elevator tether construction technology
 - Control technology of Space Elevator techer expansion
 - Optimization design technique of Space Elevator climber's overall scheme
 - Optimization design technique of Space Elevator energy system scheme

4.Task mode and solution based on large-scale and low-cost access to space

- Reusable
- Piggyback launch
- Launch by SLV
- Network launch

5.Operation management and international cooperation mode in future

- Value research on large-scale and low-cost entering space in the future
 - Research on commercial market value
 - Research on non-commercial market value
- Mode research on large-scale and low-cost entering space in the future
 - Operation mode
 - Business operation mode
 - Investment and financing management
 - Risk assessment
- International cooperation development and innovation in the future
 - International cooperation status
 - International cooperation development in the future

6. Relevant laws and policies

- The problem of space debris
 - Current situation of space debris
 - Analyze the source of space debris
 - The evolution of space debris environment
- Suggestion of Disposal measurements
 - Current situation of international space debris management
 - Requirements of launch vehicle based on space debris mitigation
 - Requirements of satellite based on space debris mitigation

7. Conclusions and suggestions

Thanks!