NEO Surveys

Don Yeomans
JPL/Caltech

With (considerable) help from Steve Larson, Grant Stokes, Ronak Shah and Richard Wainscoat

Southern hemisphere coverage CSS telescopes are used <u>full time for NEO survey</u>

CSS telescopes are dedicated and optimized for NEO search - not shared with other science experiments - for 24 nights per lunation per telescope.

Rapid response follow-up

Real-time identification of possible NEOs allow timely same-night follow-up to verify their reality and reduce the orbit uncertainty.

A refurbished 1-m telescope (silver dome at left) is sited near the 1.5-m survey telescope on Mt. Lemmon. A queue manager ensures optimal follow-up observations.

The human factor: Real Time Response

Experienced observers:

- Select coverage each night depending upon clouds and seeing
- Can adjust sequences as conditions change
- Validate the reality of candidate moving objects flagged by the software
- Can distinguish real objects only 1.5 sigma over background noise
- Schedule/carry out same-night follow-up
- Report obvious NEO candidates to MPC near real-time so others can observe

Future CSS improvements: larger fields/more coverage

Catalina Schmidt

Current 0.7-m Schmidt 8.2 deg. ²

2.5 arcsec pixels

Upgraded 0.7-m Schmidt

19.4 deg.²

1.5 arcsec pixels

Full moon to scale

Mt. Lemmon 1.5-m

1.0 arcsec pixels

Upgraded 1.5-m 5.0 deg. ² 0.8 arcsec pixels

Software is being developed to ensure that observers can keep up with the increased data rate while maintaining faint threshold levels.

The amazing case of 2008 TC₃

Lincoln Near-Earth Asteroid Research Program

MIT Lincoln Laboratory
Grant Stokes, PI
Ronak Shah & Deborah Woods

Current Survey Method with LINEAR

- 20 ° lunar keep out
- During times when moon is up, observe as far north/south as possible in the opposite direction and away from sunrise/sunset in strips of constant declination
- During moonless periods, observe in strips of constant ecliptic latitude
- Spend most of the dark period scanning ± 15° of ecliptic plane
 - Observe opposition region twice/lunar dark period

Overview

LINEAR providing asteroid discoveries and tracking since March 1998

~250,000 discovered objects 462 Potentially Hazardous Asteroids 45% of all PHAs to date

Program improvements
Continue 1m survey
Deeper, greater area search with
Space Surveillance Telescope
Incorporate new image processing
Improve existing association
methods for challenging orbits

SST is an ideal asteroid hunter

3.5-m f/1 Mersenne-Schmidt Telescope 3°×2° Field-of-view Mount achieves Maximum rate of 4°/sec 0.5" class pointing

Design combines rapid step-and-settle, significant aperture and wide field-of-view

SST Asteroid Discovery

- Performing simulations of small NEO detection with SST
- SST asteroid survey planning underway
 - ~20,000 sq. degrees per night using 5 revisits per field
 - Sensitivity to equivalent target sizes of ~200m at 1 AU
 - Complete sky coverage

The Pan-STARRS search for Near Earth Asteroids

The Pan-STARRS telescopes

- 1.8-meter diameter operational at Haleakala observatory in Maui (PS1). Second telescope (PS2) is being built
- PS1 observations are designed for many different scientific goals, including the solar system, brown dwarfs, Galactic structure, supernovae and other transients, and cosmology
- Nearly all PS1 observations allow them to be searched for Near Earth Objects
- Astrometry from PS1 is excellent, and in most cases is better than 0.15 arcsec
- Largest digital cameras in the world

Gigapixel camera

- ■1,382,400,000 px
- ■7 square degree field-of-view
- Read time 12 sec
- Some CCDs are cosmetically poor
 - ■70% fill factor

November 3 pirfields

October solar system fields

NEO Optimized survey

- We use a broad w-band filter to increase sensitivity
- Observing time increased to 11% in Nov. 2012
- Four 45 sec. exposures separated by 20 minutes in the opposition direction or 7 minutes in the low solar elongation sweet spot directions, using wide filter
- Opposition search has yielded 235 NEO discoveries, including 19 PHAs
- Sweet spot search has yielded 9 NEO discoveries, including 2 PHAs
- PS1 mostly dependent upon others for follow-up

Discovery rate

- ■PS1 discovers approximately 30 NEOs per month when the weather is good
- ■The median H magnitude for PS1 NEO discoveries so far in 2012 is 22.5
 - ■Other NEO discoveries have median H=23.1
- Pan-STARRS is good at finding larger undiscovered NEOs that are distant and faint
 - ■PS1 has discovered 10 NEOs this year with H<18.3
 - Pan-STARRS has discovered 27 comets to date

Further into the future

- Pan-STARRS 2 on Haleakala
 - Most of the funding needed is in hand, but not all
 - Likely to work together with Pan-STARRS 1
 - ■Better camera
- Higher fraction of dedicated NEO observing time in 2014