PDC2013 Flagstaff, AZ, USA

	Planetary Defense – Recent Progress & Plans
\times	NEO Discovery
	NEO Characterization
	Mitigation Techniques & Missions
	Impact Effects that Inform Warning, Mitigation & Costs
	Consequence Management & Education

A CONCEPT OF COST-SAVING SPACE SYSTEM DESIGNED FOR THE DETECTION OF NEO'S

Shugarov A.⁽¹⁾, Shustov B.⁽²⁾, Martynov M.⁽³⁾, Kudryashov V.⁽⁴⁾

(1)(2) Institute of Astronomy RAS, 48 Pyatnitskaya st. Moscow, Russia 119017, +7-495-9511279, shugarov@inasan.ru

(3)(4) Lavochkin Association, 24 Leningradskoe shosse, Khimki, Moskovskaya obl. Russia 141400, +7-495-5755222, kudryashov@laspace.ru

Keywords: Near-Earth objects, detection, space system

ABSTRACT

Several concepts of space systems aimed to detection of NEO's do exist over the world. We pay most attention to the moderate-cost space system. The concept was first presented in Bucharest at PDC-2011. Now it is modified and can be considered as preface-A study proved.

The concept is based on major requirements that are input ones for the design of a (space) system for massive detection of the dangerous bodies are:

- the minimal size D of the body to detect;
- warning time t_w ;
- maximal time interval Δt required for orbit determination and classification the body as dangerous one.

The system should be able to detect bodies not fainter than a given value m_{lim} at time not later that $t_{detection} = t_w + \Delta t$. For concrete concept we use: D = 140 m (50 m is taken for estimates), $t_w = 30$ days, and we argue that for all types of orbits $\Delta t = 5$ days is sufficient for qualifying the orbit at least as NEO or PHO types. Since m_{lim} is a function of (D, $t_{detection}$) we can estimate its value as $V=23^{m}$. This is an estimate made for asteroidal type orbits. In general cometary orbits are less favorable for detection and m_{lim} could be one or two magnitude fainter. This as well as a requirement to observe whole accessible sky at least 4 times for 5 days implies the parameters of the telescope and the whole system.

The described system includes 75 cm wide-field telescope (ground-based version