
Numerical study of the asteroid deflection 
efficiency of the kinetic impactor approach 

in the NEOShield project.

Martin Jutzi1
Patrick Michel2

1Center for Space and Habitability, Physics Institute, 
University of Bern, Switzerland

2Langrange Laboratory, University of Nice, Cote d’Azur 
Observatory, France



v

m

M

Kinetic impactor method



v

m

M

V

M

v’

Kinetic impactor method



v

m

M

V

M

v’

Kinetic impactor method

⇤Ptarget = ⇤Pprojectile + ⇤Pejecta > ⇤Pprojectile

Momentum transfer:



• Normalized with projectile momentum

• Change of  target velocity

Momentum transferMomentum transfer

Ptarget = 1 + Pejecta ⌘ � � 1

�V =
P
projectile

M
target

⇥ �



• Normalized with projectile momentum

• Change of  target velocity

Momentum transferMomentum transfer

Ptarget = 1 + Pejecta ⌘ � � 1

�V =
P
projectile

M
target

⇥ �

➡ Target structure 
➡ Material Properties
➡ Impact velocity
➡ Target size etc.



Numerical modeling of impacts

• Smooth Particle Hydrodynamics impact code
‣ Benz and Asphaug (1994, 1995),  Jutzi et al. 

(2008, 2009), Jutzi and Asphaug 2011

• To model impacts and collisions we include
‣ Strength + friction (Drucker-Prager like yield 

criterion)
‣ Porosity (based on P-alpha model)

‣ (self-gravity)
‣ Equation of State: Tillotson or ANEOS



Comparison with laboratory experiments

T = 8.0 ms

Experiment (Kobe University) Simulation

Jutzi et al.,
2009



Cumulative mass distribution

Jutzi et al.,
2009
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Comparison with laboratory experiments

 Code Validation Test:  Impact in Dry Sand  
 

The idea behind this validation test is to validate code constitutive models for a relatively 

simple (cohesionless) dry soil.  We can’t get all the information we’d like from a single 

experiment, so the initial conditions for three impact experiments are included here.  I 

tried to pick three that are as similar as possible, so you shouldn’t have to look at the 

numerical resolution question (e.g. mesh-cell size vs impactor size) more than once.  The 

experiments aren’t “ideal”, so that some compromises will have to be made. 

 

Dry Sand 1 

 

This was an impact experiment on a geotechnic centrifuge.  A picture of a typical setup is 

shown below.  

 
 

The initial conditions for this experiment were: 

Centripetal acceleration:  464G 

Impactor:   

 Polyethylene cylinder, 12.1mm high x 12.2mm diameter 

 Density = 0.94 gm/cm
3
 

 Speed = 1.81 km/s 

 Mass = 1.33 gm 

Ambient atmospheric pressure:  1 atm 

Target: 

Material = dry Ottawa Flintshot sand 

Density = 1.80 gm/cm
3
 

 

The sand was emplaced in the container at or near its maximum packing density.  Triaxial 

compression tests on the sand showed that its friction angle is 36 degrees. 

Experiments by Kevin Housen
(IMPACT HYDROCODE BENCHMARK AND 

VALIDATION PROJECT)

Impacts in Sand 
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Kinetic Impact Simulations

• Initial conditions: 

‣ Target 

- D = 300 m asteroid
- Two different target types are investigated:
‣ Micro-porous (pumice with 50% porosity)
‣ Micro-porous + macroscopic cracks (inhomogeneity)

‣ Projectile

- 400 Kg
- varying impact velocities (0.5 .. 15 km/s)
- aluminium sphere (ρ = 2.7 g/cm3)
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Impact simulations

Simulated domain

300 m



Impact simulations (10 km/s impact)
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Beta computation

~vinf~veject
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2 = (e2 � 1)x2 � 2epx+ p
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Hyperbolic orbit:

e, p are determined by initial position and velocity of 
the ejecta and the mass and the radius of the target 

From simulation

Momentum of ejecta using vz at infinity:

� = 1 + pej/(Mpvp)pej =
X

i

mi ⇥ vzinf,i

Similar to 
Holsapple and Housen 2012

v2inf = v2eject � v2esc vzinf = sin(�inf )⇥ vinf



Effect of velocity correction (veject vs. vinf)
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Momentum multiplication factor

!

sand targets were made by slowly raining into the fix-
ture to obtain a density of 1.44 gm/cm3.  For rock tar-
gets, the rock was placed on foam peanuts inside the 
standard target container to mimic a free surface. 

The impacts occurred vertically, normal to the tar-
get surface.  The projectiles were either polyethylene 
cylinders or aluminum or nylon spheres.  The impact 
velocity ranged from 0.5 to 5.7 km/s. 

A high speed video camera recorded the oscilla-
tions of the target container after impact, then an anal-
ysis gave a frequency % and amplitude H.  The im-
pulse delivered to the target is H%M/2, where M is the 
mass of the target. That impulse, divided by the initial 
projectile momentum, gives the value of ! for the ex-
periment. 
Results:  The figure below shows the data from our 

experiments, as well as literature data for other materi-
als.   The results are distinguished by their porosity.  
The aluminum targets (blue points [1]), River Rock 
(green points, present study), and basalt (red squares 
from earlier Boeing tests; red triangles from [3]) all 
show a linear trend on the log-log plot with a slope 
consistent with µ=2/3. These different non-porous ma-
terials have different magnitudes because of their dif-
fering target strength.  The new results for sand (open 
diamonds are nylon projectiles; filled diamonds are 
aluminum projectiles) also show a power-law trend, 
with a shallower slope than the nonporous materials, as 
expected.  The slope is consistent with the value of 
µ=0.4 noted above for sand.  Finally, the single point 
for pumice (orange square) falls well below the other 
materials because that impact generated very little 
ejecta.  The dependence of ! on impact speed is ex-

pected to be very weak for that material, and will be 
studied in future experiments.  

The yellow circles in the figure from [2] agree in 
some cases with the present results.  Their data for 
rock targets fall close to the red line in the figure.  
However, their results for highly porous icy materials 
have very large values of !, whereas porous materials 
are expected to have low ejecta velocities [4] and cor-
respondingly small values of !, much as shown by our 
pumice target.  We suspect that the large values of ! 
for the porous materials reflect the fact that the con-
tainer was basically emptied in the impact .  However, 
this will be investigated in our future experiments.  

It is interesting to note that when extrapolated to 
impact speeds of ~10 km/s, rocky materials exhibit 
fairly large values of !, i.e. in the range of 4 to 10.  
Extrapolating further to, say, 30 km/s, could yield 
!~20.  Therefore, kinetic impact methods for diversion 
of potentially hazardous rocky bodies may be quite 
effective.  But that may not be true for more porous 
targets.  A body akin to sand would have !~3 at 30 
km/s, while a highly porous object may have ! close to 
1. 
Acknowledgement:  This research was sponsored 

by NASA grant NNX10AG51G under the direction of 
Mr. Lindley Johnson. 
References: [1] Denardo B.P. (1962) NASA TN D-

1210.  [2] Tedeschi et al. (1995) Int. J. Impact Engng, 
17  [3] Yanagisawa M. and Hasegawa S. (2000) Icarus 
146, 270-288. [4] Housen K. and Holsapple K. (2011) 
42nd LPSC, Abstract 1608.  [5]  Holsapple K. and 
Schmidt R. (1987) JGR, 92, 6350-6376 [6] Housen et 
al. (1983) JGR, 88, 2485-2499 [7] Housen K. and 
Holsapple K. (2011) Icarus, 211, 856-875. 
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Scaling laws for idealized cases

tote in Fig. 9. To simplify the notation, the label v is used for the ini-
tial ejection velocity in this section onward; it was previously la-
beled as v0. As shown in Fig. 9, this simplified form can be
constructed as an upper envelope of actual data and therefore will
give an upper bound to the actual imparted momentum.

The total imparted momentum is the sum of the contribution of
each mass increment. The increment dM gives the amount of mass
ejected between v and v + dv. The total vertical momentum from
the initial ejection at 45! is given by the integral

PI ¼ "
1ffiffiffi
2
p

Z vmax

v#
vdM ¼ 1ffiffiffi

2
p

Z v#

vmax

v dM
dv dv ð15Þ

It is easy to integrate the idealized power-law form of Fig. 9, to get

PI ¼
nffiffiffi

2
p
ðn" 1Þ

ðMev#Þ 1" v#
vmax

" #n$ %
ð16Þ

Since n > 1, and vmax& v#, one can ignore the last term on the right
side of this equation. Then the result is a function of only the min-
imum ejection velocity v#. The factor of n/(n " 1) shows that an
‘‘average’’ velocity is greater than v# by that factor. For example,
when n = 1.2, the average velocity is 6 times larger than v#.

This defines the contribution of the ejecta. To this must be
added to the original momentum of the impactor. The total is

ðPIÞAsteroid ¼ PI þmU ¼ nffiffiffi
2
p
ðn" 1Þ

ðMev#Þ þmU ð17Þ

and the initial momentum multiplication factor bI is then given sim-
ply by a division by mU yielding the very simple equation:

bI ¼ 1þ nffiffiffi
2
p
ðn" 1Þ

Me

m
v#
U

" #
ð18Þ

in terms of the total ejecta mass, the knee velocity and the slope of
the curve.

Eq. (18) is based on the simplified form of the ejecta mass dis-
tribution with the sharp cut-off shown above. In reality, actual dis-
tributions may have considerable curvature, slowly approaching
the total ejecta mass Me as the velocity approaches zero. Fig. 10
shows such a transition occurring over a very large range:

If we choose the dashed red line as the upper limit, we assume
too much mass at each velocity, and calculate too much momen-
tum. But that gives an upper limit. A better choice might be the
lower dashed line. What effect would that have? Suppose two
choices for the cut-off velocity and total mass are denoted as
(v1,M1) and (v2,M2), related as M1/M2 = (v1/v2)"n. Then the momen-
tum calculated for each, according to the second term of Eq. (17), is
in the ratio (P1/P2) = (M1v1)/(M2v2) = (M1/M2)(n"1)/n, where n is in
the range of 1.2–1.65. Consequently, even if the mass ratio is,
say, a factor of 2 different, the effect on the momentum is a factor
of only 1.12–1.3. So, while much mass can be overlooked in assum-
ing a cut-off that is too low, the effect on the momentum is much
smaller. But for the numerical estimates to be obtained below, one
should keep in mind this variation.

The initial momentum is the quantity that could be measured in
a laboratory experiment. But for the application to an asteroid, the
results of the previous section must be considered. Eq. (12) for the
momentum per unit mass pm gives the final momentum per unit
mass of the ejecta in the gravity field of a given asteroid.

Thus the actual imparted momentum from the ejecta is given as

P ¼ "
Z

pmdM ¼ "
Z

pm
dM
dv dv

¼ nMeðv#Þn
Z vmin

1
pmv"ð1þnÞdv ð19Þ

with pm given by Eq. (12). And, since it is only the mass that escapes
that contributes, we must take the upper limit as vmin = max(v#,vesc).

Converting to the scaled velocities !v ¼ v=vesc used previously,
this becomes

P ¼ nMeð!v#Þn
Z !vmin

1
pm !v"ð1þnÞd!v

¼ nðMev#Þð!v#Þn"1
Z !vmin

1
Gð!vÞ!v"ð1þnÞd!v ð20Þ

in terms of the dimensionless function Gð!vÞ defined above. In this
scaled form the upper limit is !vmin ¼maxð!v#;1Þ. Again, the momen-
tum mU of the impactor must be added to this to get the total
momentum.

Comparing Eq. (20) with the second term of Eq. (17) shows that
the ratio, Fesc, of actual ejecta momentum to the initial value is gi-
ven as the integral

Fesc ¼
P
PI
¼

ffiffiffi
2
p
ðn" 1Þð!v#Þn"1

Z !vmin

1
Gð!vÞð!vÞ"ðnþ1Þd!v ð21Þ

This is the correction factor that must be applied to Eq. (17) to
account for an asteroid’s escape velocity (its size). The correction
factor is determined completely by vesc, v# and the exponent n.

For purposes of illustration, we consider two values of n, the
first being typical soils of moderate porosity (l = 0.4, n = 1.2), and

Fig. 9. An idealized plot of the mass of material ejected at a velocity greater than
some velocity v, as a function of the velocity v. This form ignores the gradual round-
off at the upper left. In this idealization, the fit has a ‘‘knee’’ at the coordinates
(v#,Me). This curve is then entirely determined by three quantities: the slope "3l,
and the coordinates at the knee.

Fig. 10. An ejecta mass distribution with a gradual limit to the total mass for the
smaller velocities. The upper envelope is shown with the red dashed lines, and an
intermediate one is depicted with the lower dashed blue line. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Me ¼ F½a;U; d;q; Y#; v$ ¼ G½a;U; d;q;Y # ð25Þ

However, according to the basic ‘‘point-source’’ approximation of
hypervelocity impacts, the impactor conditions can only affect the
result according to the value of one single ‘‘coupling parameter’’
scalar measure aUldm (Holsapple and Schmidt, 1987) defined by
the two scaling exponents l and m. In that case Eq. (25) reduce to

Me ¼ F½aUldm;q; Y#; v$ ¼ G½aUldm;q; Y# ð26Þ

Then a dimensional analysis of those forms show that they must re-
duce to the explicit forms involving only one single dimensionless
group each, specifically:

M$
e ¼

Me

m
Uffiffiffiffiffiffiffiffiffi
Y=q

p
 !'3l

q
d

" #3m'1
¼ Ks; v$=

ffiffiffiffiffiffiffiffiffi
Y=q

p
¼ Kvs ð27Þ

where Ks and Kvs are constants and m is the impactor mass. So these
tell us how the ejecta mass and velocity will change with impactor
size, velocity and asteroid strength. A similar analysis for the initial
momentum from the ejecta gives a result that is just a form of the
product of these two relations, and for an asteroid adds the possible
dependence on the escape velocity, which can be introduced using
Eq. (22) to give:

PI ¼ Kps mU
Uffiffiffiffiffiffiffiffiffi
Y=q

p
 !3l'1

q
d

" #1'3m
2

4

3

5

P ¼ Kps mU
Uffiffiffiffiffiffiffiffiffi
Y=q

p
 !3l'1

q
d

" #1'3m
2

4

3

5Fesc
vesc

v$
h i

ð28Þ

where using Eqs. (27) and (17) with n = 3l, the constant Kps is given
as

Kps ¼ KsKvs
3lffiffiffi

2
p
ð3l' 1Þ

 !
ð29Þ

The constants of proportionality can be found from the previous
lab experiments plotted in these scaled forms.

The data given above had two material types that are strength
dominated, with two different strength values for one of those.
Fig. 15 presents the data again, including the limit curves, for the
mass M ejected faster than some velocity v, but now in the scaled
forms just given. Note that in this strength-scaled form both of the
two weakly cemented basalt experiments superimpose, as is ex-
pected. But they do not superimpose with the basalt data, that is
attributed to their different porosity.

There are also other results for two additional highly porous
materials on this plot; those will be discussed shortly.

It is seen that the basalt data is very unique, but the other cases
fall fairly well on common curves in this scaled form. On this plot
are added fits for the limit curves with a total ejecta mass Me and
knee velocity v$.

5.1.1. Basalt scaling
Consider first the basalt data. The knee in the limit envelope for

the basalt in these scaled variables (as per Eq. (27)) has M$
e ( 0:13

and v$=
ffiffiffiffiffiffiffiffiffi
Y=q

p
¼ 0:57 and the slope n = 1.65, consistent with the

scaling exponent l = 0.55. Then the second term of Eq. (17), with
the Fesc correction gives

P
mU
¼ ð0:13Þð0:57Þ1:65

0:65
ffiffiffi
2
p Uffiffiffiffiffiffiffiffiffi

Y=q
p

 !0:65
q
d

" #'0:2
Fesc ð30Þ

Therefore, the scaling to other conditions is found from (any
consistent units)

Small strong rock scaling :

P
mU
¼ð0:13ÞU0:65Y'0:325q0:125d0:2Fesc ; b¼1þð0:13ÞU0:65Y'0:325q0:125d0:2Fesc

ð31Þ

M
 (>

 v
) /

 m

Fig. 14. Estimated ejecta masses for an impact into water at 4.6 km/s at 1 G gravity.
The power-law slope is '1.65, consistent with l = 0.55. The very large amount of
ejecta mass at speeds approaching meters/s created the very large momentum
transfer with b ( 150.

Table 2
Ejecta data and momentum multiplication calculations for small experiments in strengthless, gravity dominated materials. Complete data is in HH 2011.

Material Porosity q (g/cm3) Impact velocity d (g/cm3) Me/m v$/U b Reference

Dense sand 35% 1.75 1.9 km/s 0.93 150 5e'4 1.28 Housen (2011)
Loose sand 44% 1.58 7 km/s 1.22 3300 1e'4 2.25 Stoeffler et al. (1975)
Basalt powder 35% 1.7 7 m/s–2.3 km/s 2.2 500 3e'4 1.57 Hartmann (1985)
Glass beads 38% 1.64 2 km/s 0.93 300 4.5e'4 1.51 Housen (2011)
Water 0 1 4.6 km/s 2.05 7.e5 1.2e'4 152 Schmidt and Housen (1987)

Fig. 15. The mass with ejection velocity >v plotted in the strength-scaled form.
Note that this velocity scaling does not use an escape velocity as in the former
sections. The materials include solid basalt (again needing corrections of the mass
of a factor of 2–3), two cases of a 23% porous cemented basalt, and two low porosity
materials with porosities of 55% and 67% with very low strengths.

K.A. Holsapple, K.R. Housen / Icarus 221 (2012) 875–887 883

Scaling laws are based on an 
idealized ejecta velocity 

distribution

Slope μ: 1/3 - 2/3
~ 0.4 for porous materials
~ 0.6 for solid materials

Holsapple&Housen 2012
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Velocity distribution

Mass M ejected with a velocity greater than v

M
⇤ e
=

M m
p

 
U

p
Y
/⇢

!
�
3
µ
⇣
⇢ �

⌘ �
3
⌫
�
1

v⇤ = v/
p

Y/⇢

10-6

10-5

10-4

10-3

10-2

10-1

100

101

10-1 100 101 102 103

M
e*

v*

0.5 km/s
1 km/s
5 km/s

10 km/s
15 km/s
µ = 0.4



Point-source scaling limits

the crater radius R. As discussed below, this proportionality con-
stant is close to 1.

Fig. 2b shows the expected shape of the distribution of ejection
velocity versus position on logarithmic axes. For small values of x,
there is no ejecta, or it does not follow the power-law form. The
power-law relationship given in Eq. (5) holds for the intermediate
range of launch positions. Near the crater edge, the distribution
must steepen because gravity or strength eventually stop the flow
and all velocities approach zero.

Fig. 2c shows a similar behavior for the mass of ejecta with
velocity greater than v. The high-velocity ejecta originate near
the source, and the low velocity ejecta originate near the crater
edge. The points that delimit the applicability of the power-law
on this plot are shown as vertical dashed lines. At small values of
the ejection velocity, the distribution flattens because of the effects
of gravity or strength and approaches the total mass of ejected
material.

Near the source, right at the projectile-body interface, a small
mass of very high-speed material can be ejected by the ‘‘jetting”
process (e.g. Yang and Ahrens, 1995). Jetting occurs when two sur-
faces collide at high speeds at a low angle. We ignore the jetting
process here because it depends on details of the projectile shape
and generally involves only a small mass of material. This is illus-
trated in Fig. 2b where the power-law terminates at the left end
and in Fig. 2c where the curve approaches a vertical asymptote
(ejecta mass goes to zero) at high ejection speeds.

Plots of M(v) based on experimental data can turn downward
from the power-law at high ejection speeds for another reason.
The mass of fast ejecta is usually quite small and is therefore hard
to observe in high-speed films, or to trap in collector bins due to
the large ballistic ranges involved. In many laboratory

experiments, the mass of the fast ejecta is a tiny fraction of a gram.
Failure to collect even a small amount of this high-speed material
can cause significant underestimation of M(v) at large v. This is
likely why it is common to see plots of M(v) with slopes that are
steeper than predicted by the scaling laws for large v.

Three additional important points should be made regarding
the limits of power-law scaling. First, the regime of power-law
scaling does not have sharply defined limits. That is, the effects
of gravity or strength do not suddenly switch on beyond a specific
point. However, as shown in the next section, the breakdown of the
power-law is sufficiently rapid that it is reasonable to define an
approximate region over which power-law scaling holds.

Second, the scaling of the ejecta velocity distribution can be ex-
pressed either in terms of the impactor properties, as in Eq. (5), or
the crater size, as in Eq. (9). Note that one of the ‘‘end points” of the
power-law regime depends on impactor size and the other end de-
pends on crater size. As a result, one cannot construct a plot for all
cases in which both end points are constant in a scaled sense. For
example, consider a plot of v(x) using the scaling given in Eq. (8).
The largest distance that the power-law holds is proportional to
R, so x/R is constant at that location. But the minimum distance
for which the power-law holds is x = n1a, or x/R = n1 (a/R). There-
fore, the left-hand point at which the power-law breaks down
written in terms of the crater radius depends on the ratio of impac-
tor size to crater size for a given impact. In general then, one can
expect the power-law to break down at various points for various
datasets depending on the specific impact conditions. This is true
for all plots of the ejecta velocity distribution, a point that is dis-
cussed further below.

Third, there are circumstances in which the power-law scaling
regime can be minimal or even nonexistent. For example if the

Fig. 2. (a) Point-source scaling only applies beyond some minimum distance from the impact. Power-law scaling holds from that point out to the location where gravity or
target strength begin to arrest the cratering flow near the crater edge. (b) Schematic illustration of the behavior of the relation between ejection velocity and launch position.
The highest velocities at the left are comparable to the impactor velocity. The middle portion of the distribution is a power-law, as expected from the point-source scaling
analysis. At the right the cratering ceases and the velocities drop to zero. Part (c) shows the same behavior for the mass of material ejected to speeds greater than v. Here the
maximum value on the ordinate is the total mass of ejected material, some fraction of the cratered mass.

860 K.R. Housen, K.A. Holsapple / Icarus 211 (2011) 856–875

Housen&Holsapple 2011



Velocity distribution

Mass M ejected with a velocity greater than v

M
⇤ e
=

M m
p

 
U

p
Y
/⇢

!
�
3
µ
⇣
⇢ �

⌘ �
3
⌫
�
1

v⇤ = v/
p

Y/⇢

Projectile is large compared 
to crater dimensions
⇒ No power law regime

10-6

10-5

10-4

10-3

10-2

10-1

100

101

10-1 100 101 102 103

M
e*

v*

0.5 km/s
1 km/s
5 km/s

10 km/s
15 km/s
µ = 0.4



β - scaling with velocity

 0.1

 1

 1  10

` 
- 1

Impact velocity (km/s)

micro porous
µ = 0.55

β 
- 

1



β 
- 

1
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This could be applied directly to asteroids if the strength Y of
the basalt was the same for the lab specimens as for the asteroids.
But nowadays it is generally believed that the strength of any brit-
tle rocky mass decreases as the mass size L increases, to some
power 1/m, where typically m = 2–3 (e.g. Holsapple, 2009). That
decrease can be written as

Y ¼ Y0ðL0=LÞ1=m ð32Þ

where Y0 is the strength at the lab scale L0. That expression can be
used in Eq. (31). It is most useful to consider scaling from a small
event to another larger event in some given typical rock. So, in scal-
ing from a small lab experiment to an asteroid, there is an
additional factor of

ðb$ 1Þ ¼ ðb0 $ 1Þ L
L0

! "3l$1
2m

ð33Þ

with, for rock, l = 0.55. That shows that the ejecta contribution
b $ 1 will increase with the event scale to the power of 0.22–0.16.

To use this relation the size scale of an event must be identified.
Some asteroid events involve the entire object: examples include
the catastrophic disruption in a large impact between asteroids,
and the fission spin limits of an asteroid. In those cases the size
scale is the size of the asteroid. However, for impact cratering
the governing size scale is the size of the crater. In the application
to the deflection of asteroids, it is obvious that, the bigger the cra-
ter, the bigger the deflection. However, one must consider the lim-
itations on the size of a spacecraft that can be launched, and
therefore on the size of the crater that can be realistically formed.
That size scale is determined by our launch capabilities and not by
the size of an asteroid that might threaten the Earth. For that rea-
son, for the application here, we shall consider an upper limit of
impactor mass of say, 5–10 tons, and use an effective strength
characteristic of the crater size from such an impact. Our best esti-
mate of crater size for hard rocks, assuming a rather large impact
velocity of 20 km/s, is on the order of 50–100 m (e.g. http://
keith.aa.washington.edu/craterdata/scaling/index.htm). Therefore,
assuming a lab length scale of tens of cm, we need to consider a
length scaling with a factor of a couple of hundred, which implies
a strength reduction on the order of 10–20 or so. From the assumed
lab strength of 1.4 % 108 dynes/cm2, that results in an effective
strength of about 107 dyn/cm2. Then, assuming that same crater
size for any asteroid in the several 100 m diameter objects of inter-
est, Eq. (33) gives an additional factor of 3 increase from the lab to
the 100 m asteroid range. The total result is

Asteroid strong rock scaling :

P
mU
¼ð6:5%10$4ÞU0:65q0:125d0:2Fesc ; b¼1þð6:5%10$4ÞU0:65q0:125d0:2Fesc

ð34Þ

where in this dimensional form cgs units have been used.
These results maintain a possible dependence on the escape

velocity from the factor Fesc. That factor is the ratio of the ejecta
momentum considering how much escapes, compared to the
initial values at the impact. Will that have an effect? That depends
on the ratio of v' to vesc, according to the results in Fig. 11.

The basalt data shown above has v' ( 0:57
ffiffiffiffiffiffiffiffiffi
Y=q

p
. Assuming a

strength of 107 dyn/cm2 at the asteroid scale gives v' ) 1000
cm/s. This must be compared to the escape velocity of an asteroid:

vesc ¼

ffiffiffiffiffiffiffiffiffi
2lg

R

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p
3

qG

r !
R ¼: 1:3% 10$3R ð35Þ

using cgs units. So, for a 500 m diameter asteroid of density 3 g/cm3

the minimum velocity according to the estimate above is about
1000 cm/s, while its escape velocity is about 30 cm/s. Since the min-

imum velocity is about a factor of 30 higher than the escape veloc-
ity, the effects of the actual trajectories can be ignored for that
asteroid. All of the ejecta would escape along 45! paths without sig-
nificant slowdown or bending. And, according to the Fig. 4, all ejecta
will exceed an altitude of 5 asteroid radii within 2 min.

But that is not always true. Using the same expressions for v'
and vesc, it is easily found that when the asteroid radius is much lar-
ger than a few km, then the escape velocity becomes comparable to
the minimum velocity, and must be accounted for. That case cer-
tainly arises in asteroids running into each other, but is outside
the realm where we think it is possible to deflect one using a
spacecraft impact.

The velocity dependence in this momentum multiplication re-
sult is significant. This result would predict that an impact at
20 km/s would have the very large momentum multiplication
b ( 12.6, and a value of b ( 8.4 for an impact at 10 km/s. Obviously
this result needs much more study and verification. But it may be
that the deflection of rocky asteroids by impacts is easier than pre-
viously thought. And the scaling with impact velocity is thought to
be robust. However, again note the caution stated above about
scaling this small-scale basalt data to asteroid sizes.

5.1.2. Weakly cemented basalt scaling
A similar calculation can be done using the other lab experi-

ments of strength-dominated materials. The two weakly-cemented
basalt (also identified as weak grout) experiments of Housen
(1992) used a material specifically formulated to be of the lower
strengths thought to be valid for rocky materials at larger scale.
Therefore, for those experiments there does not need to be any fur-
ther correction for a strength dependence upon size. In fact, the
above discussion about strength predicted about 107 dyn/cm2 or
less for a km-sized or smaller asteroid. That value is roughly con-
sistent with strengths of these two simulant materials, as shown
in Table 1.

In addition, there was a definite porosity, about 23%, for that
material. That is thought to be the reason for the shallower slope
n = $1.2 of the power-law regime, consistent with l = 0.4 (a typical
value for porous materials).

In the scaled form of Fig. 15, the knee velocity from the ideal-
ized limit curve is 0:39

ffiffiffiffiffiffiffiffiffi
Y=q

p
for either the stronger or the weaker

cemented basalt materials,9 and the mass limit has 0.050 in the
scaled form. Again the knee velocity is well above the escape speeds
of interest, so we can ignore any effects of vesc. All of the ejecta will
leave the asteroid in straight paths in minutes. The non-dimensional
form for the momentum is given as:

P
mU
¼ð0:39Þð0:050Þ1:2

0:2
ffiffiffi
2
p Uffiffiffiffiffiffiffiffiffi

Y=q
p
 !0:2

q
d

$ %$0:2
¼0:083

Uffiffiffiffiffiffiffiffiffi
Y=q

p
 !0:2

q
d

$ %$0:2

ð36Þ

Then, unfolding the dimensionless forms, the final result is

Weak strength; porous scaling :

P
mU
¼ ð0:083ÞU0:2Y$0:1q$0:1d0:2; b ¼ 1þ ð0:083ÞU0:2Y$0:1q$0:1d0:2

ð37Þ

for either strength material. It can be noted that when l = 0.4, the
predicted dependence on the material strength has the power of
only (3l $ 1)/2 = 0.1. The two materials have a strength ratio of
about 5:1 so the predicted dependence of the momentum multipli-
cation on strength is only about 15%, small compared to the uncer-
tainty in the interpretation of the experimental curves. This form is
thought to be appropriate for the asteroid size scale

9 The fact that they superimpose is predicted from the strength scaling.
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Summary

• Momentum multiplication factor is small for 
porous materials  (β < 2  for v < 15 km/s)

• Effects due to macroscopic inhomogeneities 
disappear at high impact velocities

• Strength (tensile and crushing) is important

• Comparison to scaling laws:
‣ Slope in velocity distribution is as predicted 

‣ Slope of β vs. impact velocity is slightly higher



Outlook

• Investigation of different material properties
‣ very low strength (tensile, crushing)
‣ very high porosities

• Higher impact velocities
‣ using more sophisticated ANEOS

• Surface and structural inhomogeneities



Questions?


