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Kinetic impactor method
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Kinetic impactor method
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Momentum transfer:

—

Pta/rget — Pprojectz’le =+ Pejecta > Pprojectile




Momentum transfer

® Normalized with projectile momentum

Ptarget =1 _I_Pejecta — 6 > 1

® Change of target velocity

AV — Pprojectz’le < 6

Mtarget




Momentum transfer

® Normalized with projectile momentum

Ptarget =1 _|_Pejecta — 6 > 1

® Change of target velocity

AV — Pprojectz’le < 6

Mtarget

= Target structure
= Material Properties

= |mpact velocity
= Target size etc.




Numerical modeling of impacts

® Smooth Particle Hydrodynamics impact code

» Benz and Asphaug (1994, 1995), |utzi et al.
(2008, 2009), Jutzi and Asphaug 201 |

® Jo model impacts and collisions we include

» Strength + friction (Drucker-Prager like yield
criterion)

» Porosity (based on P-alpha model)
» (self-gravity)
» Equation of State: Tillotson or ANEOS



Comparison with laboratory experiments

T = 8.0 ms

Experiment (Kobe University) Simulation

Jutzi et al,,
2009



Comparison with laboratory experiments
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Comparison with laboratory experiments

Experiment3 1G, 3.4 ms
—— Simulation

position (cm)

Impacts in Sand
|G or 464 G

Experiments by Kevin Housen
(IMPACT HYDROCODE BENCHMARK AND
VALIDATION PROJECT)

Velocity (cm/s)
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Kinetic Impact Simulations

® |nitial conditions:

» Target

- D = 300 m asteroid
- Two different target types are investigated:
» Micro-porous (pumice with 50% porosity)
» Micro-porous + macroscopic cracks (inhomogeneity)

» Projectile

- 400 Kg
- varying impact velocities (0.5 .. |5 km/s)
- aluminium sphere (p = 2.7 g/cm?



Impact simulations

Specific impact energy needed
for disruption

—e— non-porous (basalt)
—e— porous (pumice)

this study
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Impact simulations

Simulated domain

N\,




Impact simulations (10 km/s impact)

micro - porous . 10M  micro+macro - porous




Beta computation




Beta computation

From simulation




Beta computation

From simulation

Hyperbolic orbit:
y- = (e — 1)z — 2epx + p°

e, p are determined by initial position and velocity of
the ejecta and the mass and the radius of the target




Beta computation

From simulation

Hyperbolic orbit:

Z| y- = (e — 1)z — 2epx + p°

X e, p are determined by initial position and velocity of
the ejecta and the mass and the radius of the target

VZint = SIN(Dinf) X Vinf




Beta computation

From simulation

Hyperbolic orbit:

Z| y- = (e — 1)z — 2epx + p°

X e, p are determined by initial position and velocity of
the ejecta and the mass and the radius of the target

2 2 2 . — 9 . .
Uz'nf — Ueject — Uoee VZinf — Szn(¢znf) X Vin f

Similar to
Momentum of ejecta using vz at infinity: Holsapple and Housen 2012

Pej — Zmz X VZinf,i b=1 —I—pej/(Mpvp)




Effect of velocity correction (Veject VS. Vinf)

using vz
using vz

| km/s impact
| km target

’
Vertical velocity (m/s)




Momentum multiplication factor
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Impact velocity (km/s)




Momentum multiplication factor
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Scaling laws for idealized cases

Total ejecta mjass Me _
Scaling laws are based on an

idealized ejecta velocity
distribution

Slope M: 1/3 - 2/3
~ 0.4 for porous materials
~ 0.6 for solid materials

Log (ejecta mass M)

v Vimax

Log (ejecta velocity v) Holsapple&Housen 2012



Velocity distribution

Mass M ejected with a velocity greater than v
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Velocity distribution

Mass M ejected with a velocity greater than v
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Point-source scaling limits

4——— Point-source scaling applies — >
I

Non-power-law scaling due to >
influence of gravity or strength

Housen&Holsapple 201 |



Velocity distribution

Mass M ejected with a velocity greater than v
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Projectile is large compared
_ to crater dimensions
= No power law regime




B - scaling with velocity
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Effects of strength and porosity

S .
- =——— 50% porosity

50% porosity, higher Y,

Size scaling of tensile strength: L=??

Y = Yo(Lo/L)'™ -2

Holsapple and Housen, 2012 7
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Effects of strength and porosity
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Effects of strength and porosity
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Summary

Momentum multiplication factor is small for
porous materials (f <2 for v < |5 km/s)

Effects due to macroscopic inhomogeneities
disappear at high impact velocities

Strength (tensile and crushing) is important

Comparison to scaling laws:

» Slope in velocity distribution is as predicted

» Slope of B vs.impact velocity is slightly higher



Outlook

® |nvestigation of different material properties
» very low strength (tensile, crushing)
» very high porosities

® Higher impact velocities
» using more sophisticated ANEOS

® Surface and structural inhomogeneities






