Momentum transfer via direct impact: Experimental measurements

Funded under NASA's NEO Program c/o Lindley Johnson

Kevin Housen Keith Holsapple The Boeing Co, Seattle Univ. Washington, Seattle

The central question

- How effective is the direct impact method?
 - What is the largest asteroid we could expect to deflect?

Momentum multiplication factor

Change in asteroid momentum: $\Delta p = p_s + p_e$

Define
$$\beta = \frac{\Delta p}{p_s}$$

$$\beta = 1 + \frac{p_e}{p_s}$$

 β > 1, unless there is no escaping ejecta

Our approach

- Conduct impact experiments to directly measure β.
 - But can't do experiments under the conditions of an actual mission.
 - So, the experiments are "scaled" to the mission conditions.
- Numerical simulations
- Validate against experiments
- Extend the reach of experiments -8

Scaling of ejecta momentum

$$\beta = 1 + \frac{p_e}{p_s}$$

- Understanding β is just a cratering and ejecta problem.
- We know how ejecta scales from pointsource theory of cratering.
 - (Housen et al 1983, Holsapple & Schmidt 1987, Housen & Holsapple 2011)

Two regimes of crater formation

- Gravity regime pgh >> cohesion
 - Large-scale impacts, or craters formed in very low strength materials (e.g. sand)
- Strength regime pgh << cohesion
 - "Small" impacts in rocky targets
 - And perhaps "cohesionless" soils at micro-G
- Applying lab results to a mission requires knowing which regime you're in.

Rock strength is rate dependent

Scaling of B

	Nonporous	Moderate porosity	Highly porous
Strength	$\beta - 1 \propto a^{0.15} U^{0.73}$	β -1 $\propto U^{0.2}$	β –1 \approx constant
Gravity	$\beta - 1 \propto (ga)^{-0.25} U^{0.5}$	$\beta - 1 \propto (ga)^{-0.08} U^{0.16}$	β –1 \approx constant

Low-porosity materials have the strongest velocity dependence

Impact speed U

Experiments to measure \(\beta \)

- ¡ Ballistic pendulum
 - Works, but granular materials need to be shot vertically
- Force transducers
 - Uncertainty when integrating force-time history to get impulse
- Suspend target from springs

Experiments to measure β

How we measure \beta

Sand target

- 5.7 km/s impact
- 6.4 mm Al sphere

Impulse delivered to target:

$$I = \frac{H\omega M}{2}$$

$$\beta = \frac{I}{mU}$$

m,U = projectile mass, speed

Target materials used to-date

Dry sand 35% porosity

High porosity Medium cohesion

Cohesive pumice

Granular pumice

Granular pumice 84% porosity

Results

High porosity reduces ejecta velocity

Applications to asteroids

- Is the event strength or gravity dominated?
 - The crater scaling is different in these two regimes.

How much of the ejecta escapes the asteroid, and how much momentum does it contain?

Rocky targets

- Strength dominated at all size scales of interest.
- All ejecta would escape an asteroid.
 - Slowest ejecta has m/s speeds.
 - Escape speed for 500 masteroid = 0.2 m/s

Granite target 5 km/s impact 6.4 mm Al sphere

Scaling to higher impact speed

5 km/s lab experiment

Measured

$$\beta \approx 4 - 5$$

4x higher velocity

20 km/s mission

$$\beta = 9-12$$

CTH @ 20 km/s: $\beta = 7.5$

Conservative:

$$\beta \approx 8$$

Strain rate effect

$$\beta$$
 – 1 \propto $\sigma^{0.15}$ Impactor size

- Strength of rock depends on strain rate.
 - Rock is weaker for large-scale impacts.
 - Lower strength means bigger craters, more ejecta.
- For a 1-m impactor, we get a factor of 2x increase in β -1.
 - 20 km/s mission to a rocky asteroid:

 $\beta \approx 15$

Implications for deflection

$$\Delta V = 0.01$$
 m/s for 1-decade warning (Ahrens & Harris, 1992)
$$\beta = \frac{M\Delta V}{MU} = 15$$
5-ton spacecraft, 20 km/s

A 5-ton impactor at 20 km/s imparts $\Delta V \ge 0.01$ m/s for rocky asteroids up to ~500m diameter.

1-ton spacecraft could deflect a ~300m diameter body.

Additional conservatism - assume no rate dependence: 5-ton spacecraft could deflect a ~300m diameter body.

Sand targets

- Lab experiments are gravity dominated.
- Assume gravity dominated for a small asteroid as a bounding case.
- Must account for ejecta that are retained.
 - Holsapple and Housen (2012) Icarus 221.
- Bottom line:
 - $\beta \approx 1$ to 2 for a 20 km/s deflection mission.
 - Deflection of 200 to 300m bodies is possible.

Regolith-covered rock

Asteroid Steins ~5 km dia

- All asteroids imaged to date show signs of a regolith-covered surface.
- So bare rock may be an unlikely case.
- What is the effect of a regolith layer?
- Impacted basalt target covered by a layer of sand
 - Only have 1 experiment.

Summary

- We find significant momentum multiplication for rocky targets, or regolith-covered rock.
- Increased target porosity causes
 - dramatic decrease in β as target porosity increases
 - weaker dependence on impact speed
- For a decade of warning deflection is possible for
 - Rocky bodies up to ~500 m diameter
 - "Balls of sand" up to 200-300 m diameter

Open questions

- Effect of a regolith layer
 - How does the layer thickness affect β?
 - What is the impact velocity dependence?
- Strain rate effects should be evaluated directly in momentum transfer experiments with rock targets.
- How does the "fabric" of the target affect β?
- What is the cohesive strength of granular materials at μ-G gravity?
 - How does that affect β?