

Mission Opportunities for the Flight Validation of the Kinetic Impactor Concept for Asteroid Deflection

Presented to the 2013 IAA Planetary Defense Conference

Sonia Hernandez^{*} Brent W. Barbee[†] Shyam Bhaskaran[‡] Kenneth Getzandanner[†]

The University of Texas at Austin^{*} NASA/Goddard Space Flight Center[†] Jet Propulsion Laboratory/California Institute of Technology[‡]

April 16th, 2013

Motivation and Objective

- Our planet has been struck with devastating force by asteroids and will be hit again.
- Collisions are aperiodic and can happen at any time.
- Deflection techniques have been proposed to defend our planet from impact.
 - Types:
 - 1. Kinetic Impactor
 - 2. Gravity Tractor
 - 3. Nuclear Detonation
 - None of these techniques have been tested!
- NEA mitigation technologies must be thoroughly tested before they can be considered reliable.

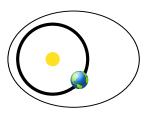

We propose a campaign of asteroid deflection technology test missions deployed to harmless asteroids in order to safely test, measure, and refine the Kinetic Impactor deflection technique.

Classification of NEAs

Amors

Earth-approaching NEAs with orbits exterior to Earth's but interior to Mars' (named after asteroid (1221) Amor)

Apollos

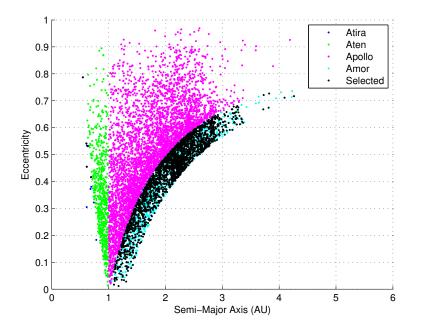

Earth-crossing NEAs with semi-major axes larger than Earth's (named after asteroid (1862) Apollo)


Atens

Earth-crossing NEAs with semi-major axes smaller than Earth's (named after asteroid (2062) Aten)

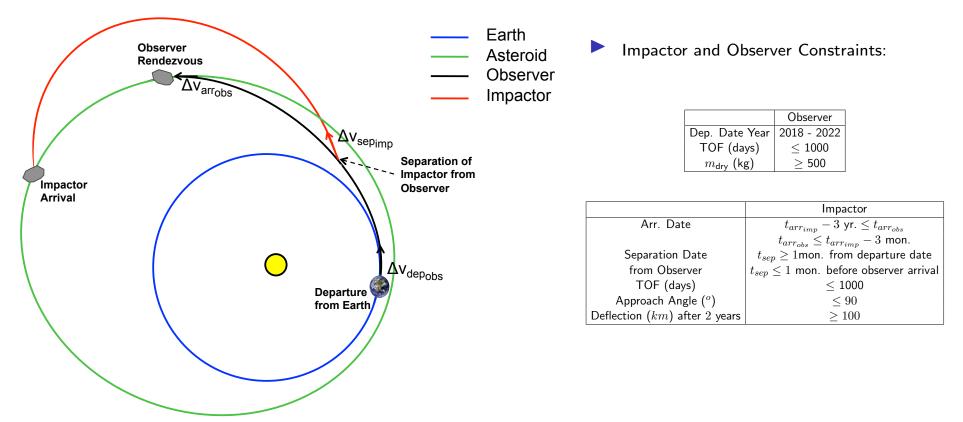
Atiras

NEAs whose orbits are contained entirely within the orbit of the Earth (named after asteroid (163693) Atira)



Identifying Possible Candidates

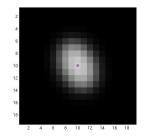
- Safe experiments which pose no risk to Earth: Atiras and Amors
- NEAs with orbit inclination less than 20 degrees
- $\blacktriangleright\,$ NEAs with diameter of at least 95 m and OCC ≤ 2

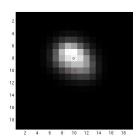

- Using a single launch vehicle (Atlas V 551) helps make the mission affordable
- Observer and impactor spacecraft launch together but separate after; observer rendezvouses with NEA 3 months to 3 years prior to impact
- Impactor must create a measurable and meaningful deflection

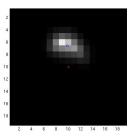
Trajectory Design

- Single Launch using Atlas V 551 for Impactor and Observer
- Developed a grid search algorithm to check for all trajectory possibilities
- Trajectory design utilized two-body dynamics and patched conics for the spacecraft, and high-fidelity ephemeris for Earth and NEAs

Impactor Approach Angle


- The impactor spacecraft approach phase angle with respect to the asteroid needs to be taken into account
- Small approach phase angle to facilitate optical acquisition of the NEA by the spacecraft's onboard sensors during terminal guidance
- The approach angle is computed as


$$\phi = \cos^{-1} \left(\hat{\mathbf{v}}_{sc/nea} \cdot \hat{\mathbf{r}}_{nea} \right) \le 90^{\circ}$$



Example to show why low approach angle is important

$$\phi = 5^{\circ} \qquad \phi = 80^{\circ} \qquad \phi = 140^{\circ}$$

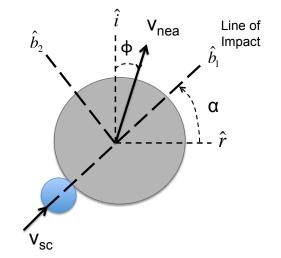
Kinetic Impactor Model

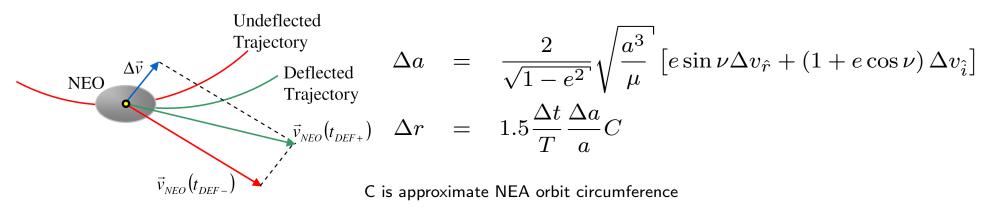
- 1. Computing Δv
 - ▶ Plastic collision: $v_{nea}^+ = v_{sc}^+$
 - Conservation of LM for the NEA-spacecraft system:

$$mv_{sc}^- + Mv_{nea}^- = (m+M)v_{nea}^+$$

•
$$\Delta \mathbf{v} = \Delta v_r \hat{\mathbf{r}} + \Delta v_i \hat{\mathbf{i}} + \Delta v_c \hat{\mathbf{c}}$$

where $\Delta \mathbf{v} = f(\beta, M, m)$.


Kinetic Impactor Model


- 1. Computing Δv
 - ▶ Plastic collision: $v_{nea}^+ = v_{sc}^+$
 - Conservation of LM for the NEA-spacecraft system:

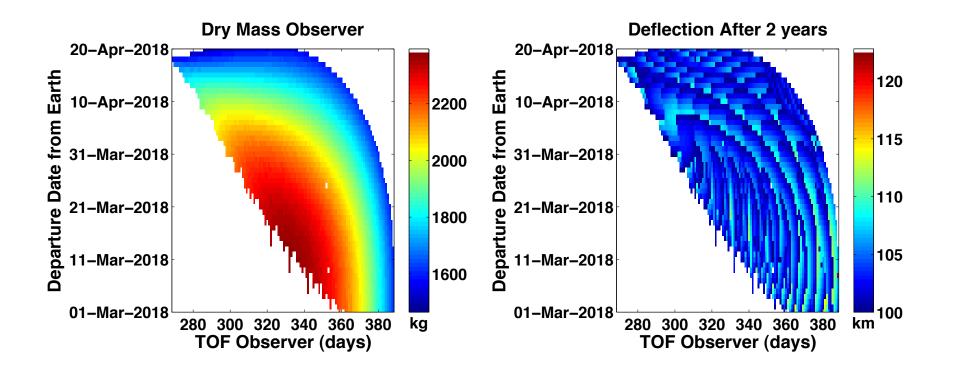
$$mv_{sc}^- + Mv_{nea}^- = (m+M)v_{nea}^+$$

•
$$\Delta \mathbf{v} = \Delta v_r \hat{\mathbf{r}} + \Delta v_i \hat{\mathbf{i}} + \Delta v_c \hat{\mathbf{c}}$$

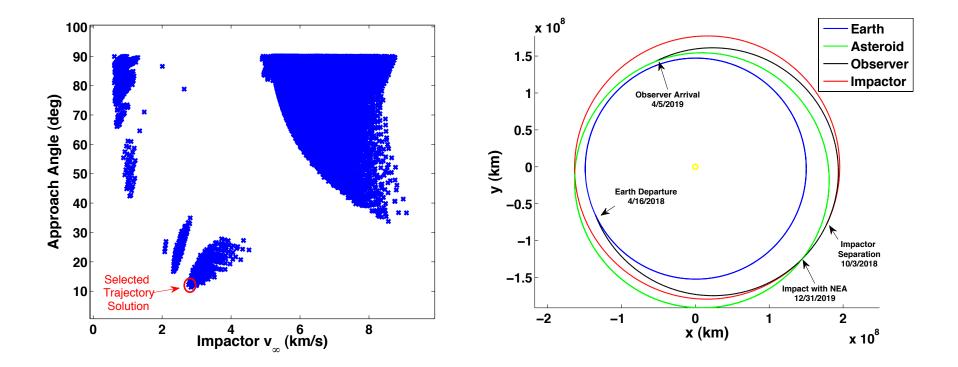
where $\Delta \mathbf{v} = f(\beta, M, m)$.

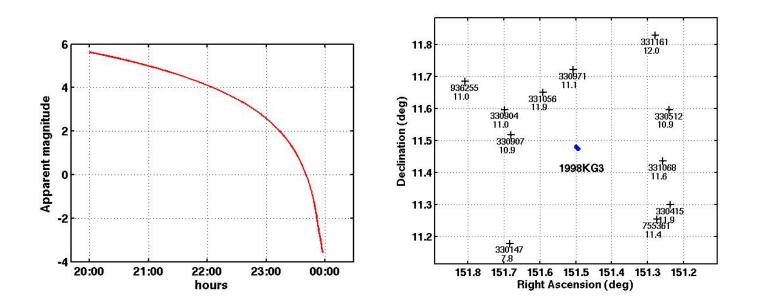
2. Computing Δr : Use Lagrange planetary equations as an approximation.

- We run grid search algorithm with ALL NEAs to find ALL possible trajectory solutions
- Three NEAs were found to meet all the requirements
 - 1. 1998 KG_3
 - 2. 2003 SM_{84}
 - 3. 2004 EO_{20}
- Each one offers many feasible trajectory solutions
- The solution shown here is the one with the lowest approach angle at impact

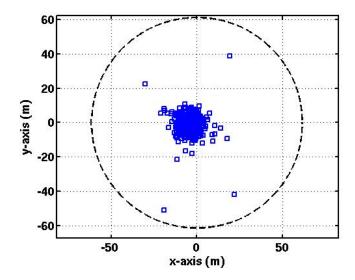

	NEA	D	000	Туре	Earth Dep.	C ₃	ΔV_{arr}	Separation	ΔV_{sep}	TOF	TBI	m _{final}	Δr	Approach
		(m)			Date	(km^2/s^2)	(km/s)	Date	(km/s)	(days)	(days)	(kg)	(km)	Angle (°)
1	1998 KG ₃	123	0	Obs	4-16-2018	16.12	3.04	10-3-2018		354	270	500		
1			0	Imp	4-10-2010		2.84		0.9	454		2,280	101.35	11.28
2	2003 SM ₈₄	97	1	Obs	3-27-2021	33.69	1.60	11-22-2021		294	820	500		
2				Imp	3-21-2021		8.11		8.34	874		132	103.21	30.85
2	2004 EO ₂₀	137	2	Obs	9-22-2019	10.74	3.15	3-10-2020		327	840	500		
3	2004 EO20	1.21	1 2	Imp	9-22-2019	10.74	7.68	5-10-2020	6.67	997	040	367	138.89	36.23

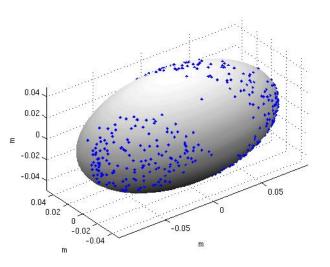
- ▶ 1998 KG₃ was chosen for further mission analysis because of its low v_{∞} at impactor arrival and low approach angle ϕ , it offer a good option as a first test mission.
- The other two candidates offer more challenging missions, which will be great opportunities for future test missions!


Γ		NEA	D	000	Туре	Earth Dep.	C_3	ΔV_{arr}	Separation	ΔV_{sep}	TOF	TBI	m _{final}	Δr	Approach
			(m)			Date	(km^2/s^2)	(km/s)	Date	(km/s)	(days)	(days)	(kg)	(km)	Angle (°)
Γ	1	1998 KG ₃	102	0	Obs	4-16-2018	16.12	3.04	10-3-2018		354	270	500		
	1	1990 KG3	125	0	Imp	4-10-2018	10.12	2.84	10-3-2010	0.9	454	210	2,280	101.35	11.28


		NEA	D	000	Туре	Earth Dep.	C_3	ΔV_{arr}	Separation	ΔV_{sep}	TOF	TBI	m _{final}	Δr	Approach
			(m)			Date	(km^2/s^2)	(km/s)	Date	(km/s)	(days)	(days)	(kg)	(km)	Angle $(^{o})$
	1	1998 KG ₃	123	0	Obs	4-16-2018	16.12	3.04	10-3-2018		354	270	500		
Ľ	1	1990 KG3	125	0	Imp	4-10-2010	10.12	2.84	10-3-2010	0.9	454	210	2,280	101.35	11.28

1998 KG₃: Terminal Guidance Analysis


- Terminal guidance simulation utilizes JPL AutoNav software, which has extensive heritage (e.g., Deep Impact, Stardust)
- In this study we model the Deep Impact Medium Resolution Imager (MRI) camera (focal length = 2100 mm, 1024 square pixel CCD array, 0.6 degree FOV, 10 microradian IFOV)
- ► The MRI resolves 1998 KG3 72 hours prior to impact
- Lack of sufficiently bright background stars in the FOV centered on 1998 KG3 leads to the use of an IMU for spacecraft attitude
- Terminal guidance phase begins 4 hours before impact (ensures asteroid will be in camera FOV at start of AutoNav in spite of orbit knowledge uncertainties); 3 terminal guidance maneuvers are performed



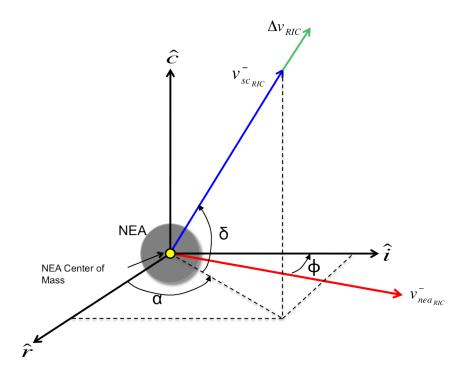
- We model the nominal asteroid diameter of 123 m as a 2:1 ellipsoid with dimensions 196 × 98 × 98 m
- Asteroid pole orientation is sampled from a uniform distribution
- 497 out of 500 Monte Carlo runs show successful asteroid impact; the majority of impact locations are within 25 m of the asteroid center

Conclusion

- It is imperative that we begin testing candidate NEA deflection systems, such as the kinetic impactor on harmless NEAs
- We provide a set of targets that offer safe and affordable mission scenarios
- Kinetic impactor must be measured by an observer spacecraft that has previously rendezvoused
- Impactor and Observer launch together on a single launch vehicle
- Key filters are NEA diameter, OCC, approach phase angle, relative velocity at intercept, and amount of deflection
- ► Full mission analysis is performed on **1998 KG**₃
- Future Work
 - Only accept Earth departure asymptote declinations that are within a specified range given by the launch vehicle
 - \blacktriangleright Do not let magnitude of Δv maneuvers exceed a specified value
 - Muti-revolution Lambert targeter and incorporate gravity assists
 - Apply optimization algorithm

Appendix

Kinetic Impactor Model



Applies an impulsive velocity change to the NEA by colliding a spacecraft with the asteroid.

- 1. Compute ΔV imparted to a NEA
- 2. Compute deflection Δr

The Radial, In-Track, Cross-Track (RIC) Frame

$$\hat{\mathbf{r}} = \frac{\mathbf{r}_{nea}}{\|\mathbf{r}_{nea}\|} \qquad \qquad \hat{\mathbf{c}} = \frac{\mathbf{r}_{nea} \times \mathbf{v}_{nea}^{-}}{\|\mathbf{r}_{nea} \times \mathbf{v}_{nea}^{-}\|} \qquad \qquad \hat{\mathbf{i}} = \hat{\mathbf{c}} \times \hat{\mathbf{r}}$$

$$\mathbf{v}_{nea_{RIC}}^{-} = v_{nea}^{-} \left(\begin{array}{c} \sin \phi \\ \cos \phi \\ 0 \end{array} \right)$$

$$\mathbf{v}_{sc_{RIC}}^{-} = v_{sc}^{-} \left(\begin{array}{c} \cos\alpha\cos\delta\\ \sin\alpha\cos\delta\\ \sin\delta \end{array} \right)$$