



# Asteroid Impact & Deflection Assessment (AIDA)

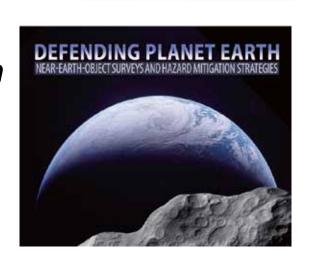
Andrew F Cheng
Cheryl Reed
Andy Rivkin
Andres Galvez
Ian Carnelli
Patrick Michel
Stephan Ulamec
Jens Biele

Paul Abell Brent Barbee Dan Mazanek Lance Benner JHU/APL JHU/APL JHU/APL ESA ESA

CNRS DLR DLR JSC GSFC LaRC

JPL

European Space Agency






# Mitigating the Asteroid Hazard

- § Defending Planet Earth: Near-Earth-Object Surveys and Hazard Mitigation Strategies (US National Research Council, 2010)
  - Civil defense
  - Slow push or pull
  - Kinetic impactors

- Nuclear explosions
- § Space Mission Priorities for Near-Earth Object Risk Assessment and Reduction (ESA NEOMAP, 2004)
  - Don Quijote mission study











# ESA Don Quijote study

- § Don Quijote asteroid deflection mission studied by ESA in 2005-2007
- § Two launches
  - § Interceptor
  - § Rendezvous
- § Not affordable









# **Asteroid Mitigation**

- Target NEO Global Community Workshop in February 2011 (<a href="http://www.targetneo.org/">http://www.targetneo.org/</a>)
- International Workshop on Mitigation at the PDC in 2011
- JHU/APL, ESA and other participating NASA Centers started a joint Mitigation Demonstration Mission Study in 2012
  - This has become **AIDA**

# ESA web site: Search web for "AIDA mission"







# AIDA Program Overview

- § Double Asteroid Redirection Test (DART) study
  - NASA HQ, GSFC, JSC, LaRC, JPL
  - Asteroid impact and deflection, cost under \$150 M including launch
- § Asteroid Impact Mission (AIM) study
  - q ESA HQ, CNRS, DLR
  - Impact test and characterization, cost under €150 M including launch



AIDA = AIM + DART







# AIDA Asteroid Deflection Study

- § AIDA will send two spacecraft to the binary asteroid 65803 Didymos
- § AIDA will demonstrate asteroid deflection and characterize impact effects
- § AIDA is an international cooperation with
  - DART asteroid impactor
  - AIM asteroid rendezvous
- § Each AIDA component is independent and has unique value

5/29/2012 APL 6

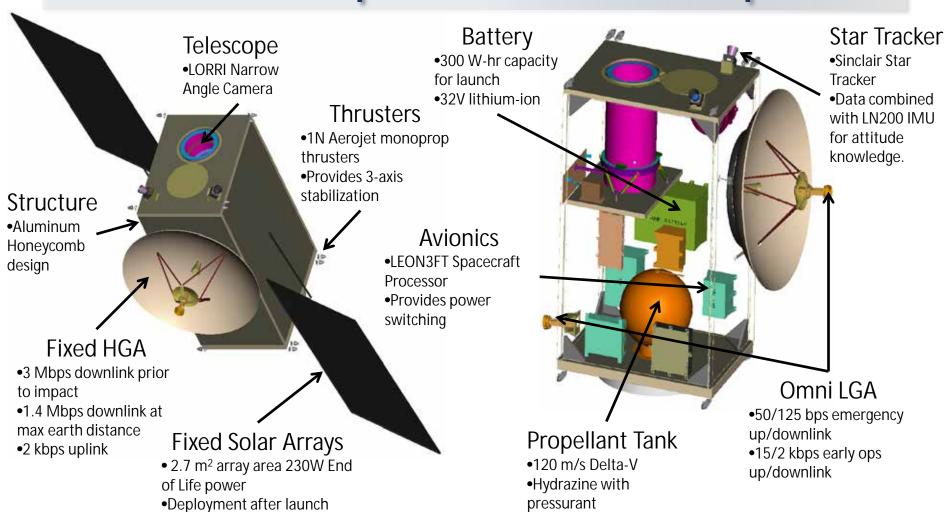




### DART as a First Test of Deflection

- § Asteroid deflection demonstration
  - Must yield measurement of asteroid deflection to within 10%
- § Choice of NEA binary [65803] Didymos as prime target
  - Already well-observed radar and optical binary
  - Approaches to 0.071 AU from Earth in Oct 2022, an excellent mission and radar opportunity
  - A relatively low-risk PHA with MOID > 0.04 AU; the target asteroid is gravitationally bound to a massive primary, minimizing change of heliocentric orbit

PHA=potentially hazardous asteroid


MOID=minimum orbit intersection distance







# **DART Spacecraft Concept**







# DART Spacecraft Summary

|                  | Mass (kg) | Power (W) |
|------------------|-----------|-----------|
| Instrument       | 9         | 5         |
| Spacecraft       | 158       | 206       |
| Propellant       | 18        | N/A       |
| Total            | 185       | 211       |
| Lift Capability  | 330       | N/A       |
| Total Margin     | 145       | 63        |
| Total Margin (%) | 87%       | 30%       |

- Simplistic spacecraft design with single instrument enables low mass
- Comprises of low-cost, COTS components
- The Minotaur V selected as launch vehicle due to low cost
- Currently hold large mass margins, and plan to add dummy weight to reach LV capability, in order to increase impact energy

#### DART Spacecraft Driving Design Requirements

The spacecraft shall impact with enough momentum to change the binary orbital period of Didymos by >0.1%.

Miss distance from the target center of mass (impact parameter) shall be less than 25 m

The impact point location shall be determined to an accuracy of 1m

Final imaging of the target shall be better than 1 m/px, SNR 20; (Goal) <20 cm/px and SNR 100




### Rapid Response, Space Intercept

- § APL mission experience relevant to asteroid mitigation by spacecraft intercept
  - Operation Burnt Frost in 2008
    - US Navy ship-based missile intercept of a failed satellite, a successful hit-to-kill
  - Vector Sum mission (Delta 180) in 1986
    - First space-based intercept of thrusting vehicle








### **Burnt Frost**

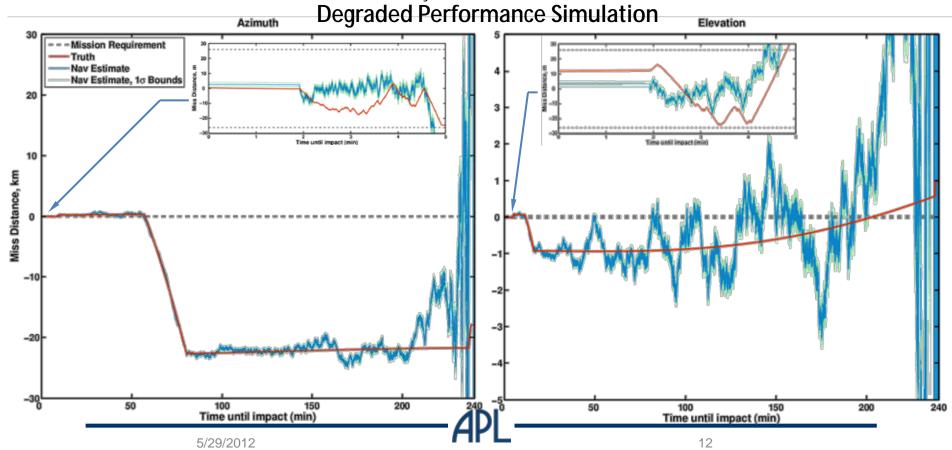
#### Critical National Need to Protect Against Potential Loss of Life

- Sobjective: protect potential populated areas from an unpredictable reentry and possible crash of ~5000lb satellite with hazardous hydrazine propellant
- Integrated government, laboratory, and industry team with ~2 months warning successfully executed a one-time mission for the Navy and Missile Defense Agency using Aegis BMD that
  - Reported satellite as an engageable track
  - Identified satellite as a valid target
  - Computed valid intercept points and revised aimpoint
  - Successfully engaged and eliminated the target



Pre-Intercept



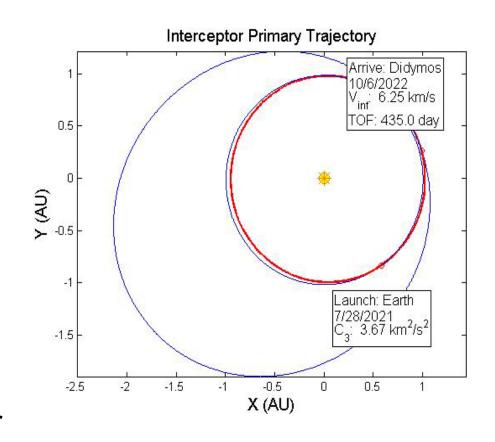

5/29/2012 11





### **Terminal Guidance Simulation**

- Ground based navigation aims DART for an intercept with the Didymos primary. At the hand-off, the terminal guidance software initializes and diverts to the target using proportional navigation. The autonomy shuts down in the final 2 minutes to allow for a science imaging campaign.
- In this simulation, DART is initialized with a 20 km error in its targeting, and given highly degraded sensor characteristics. Even in these conditions, the autonomy converges on the target and impacts successfully, using less than 10 m/s ΔV. The nominal case has an accuracy of less than 5m.








# 2022 Didymos Intercept

- § DART trajectory remains near 1 AU from Sun, Earth distance < 0.11 AU.</p>
- § DART launch on Minotaur V.
- § Impact velocity 6.25 km/s
- § Impact event in 2022 occurs under excellent Earth-based viewing conditions including radar

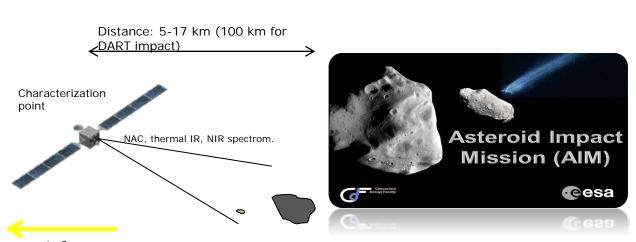






### **DART Payload Objectives**

- § DART payload is an imager based on New Horizons LORRI
  - <sup>q</sup> 20 cm telescope with CCD camera
- § Support autonomous guiding to impact target body through center
- § Determine impact point within 1% of target diameter
- § Characterize pre-impact surface morphology and geology of target (goal <20 cm/px) and companion body</p>








### AIM as a monitoring mission

- § target characterization through a rendezvous and observation from a distance
- § characterization also from ground (radar, optical) simpler, more robust
- § autonavigation demonstration
- § Cost target under 150 M€





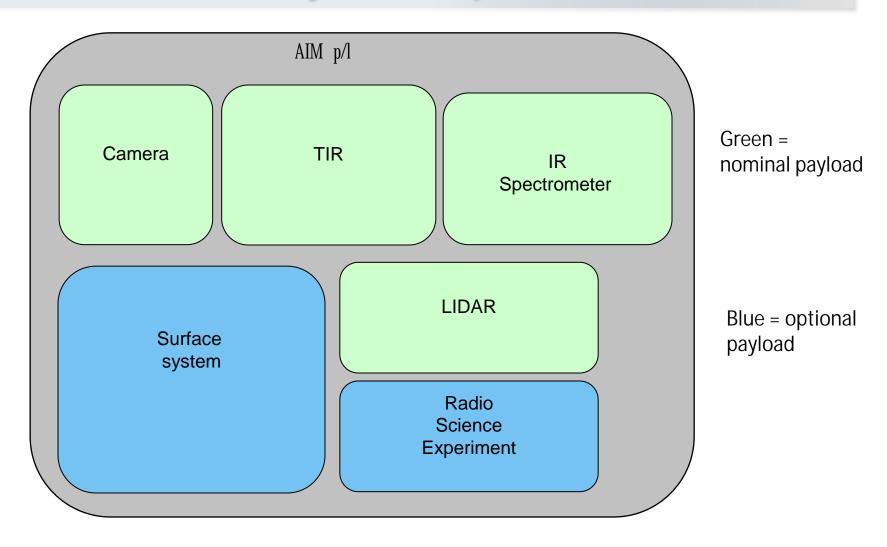
15

-APL

to Sun





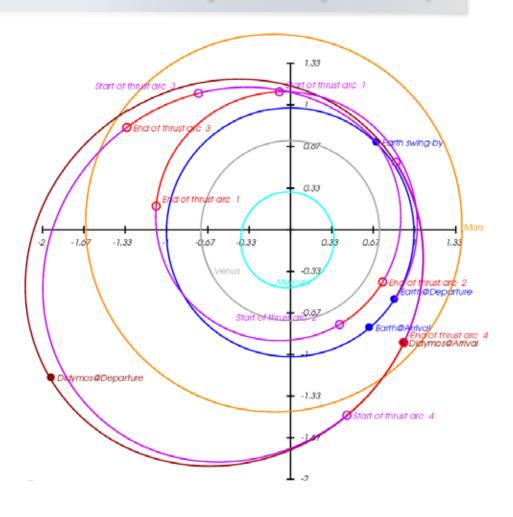

### AIM Payload Objectives

| P# | Parameter                                               | Relevance to goal                                                                                                  | Possible measurement / is it a must have?                                                                                                                                                          |
|----|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | · Orbital state                                         | Key to determine momentum                                                                                          | - Ground (photometry, radar), in-space (CAM) – a must                                                                                                                                              |
| 2  | <ul><li>Rotation<br/>state</li></ul>                    | Key to determine momentum                                                                                          | - Ground (photometry, radar), in-space (CAM) – a must                                                                                                                                              |
| 3  | <ul> <li>Size, Mass,<br/>Gravity</li> </ul>             | <ul> <li>Mass key to momentum, size to shape,<br/>volume, gravity to internal structure,<br/>operations</li> </ul> | <ul> <li>Mass from binary orbit, shape model from CAM (or<br/>LIDAR), a must, gravity field RSE (not a must?)</li> </ul>                                                                           |
| 4  | <ul> <li>Geology,<br/>surface<br/>properties</li> </ul> | <ul> <li>Bulk composition, material mechanical properties, surface thermal inertia</li> </ul>                      | <ul> <li>VIS photometry to derive spectral type (must), IR spectrometer mineralogy (not a must)</li> <li>TIR for Yarkowski / YORP (not a must if not large source of error)</li> </ul>             |
| 5  | <ul><li>Density,<br/>internal<br/>structure</li></ul>   | <ul> <li>Affects absorption of impact energy,</li> <li>"data point" for study of asteroid mitigation.</li> </ul>   | <ul> <li>Bulk values derived from mass, shape model</li> <li>Radar Tomography, seismic probing. I largely increases complexity and not a must (conclusion DQ/NEO1). = outside scope AIM</li> </ul> |





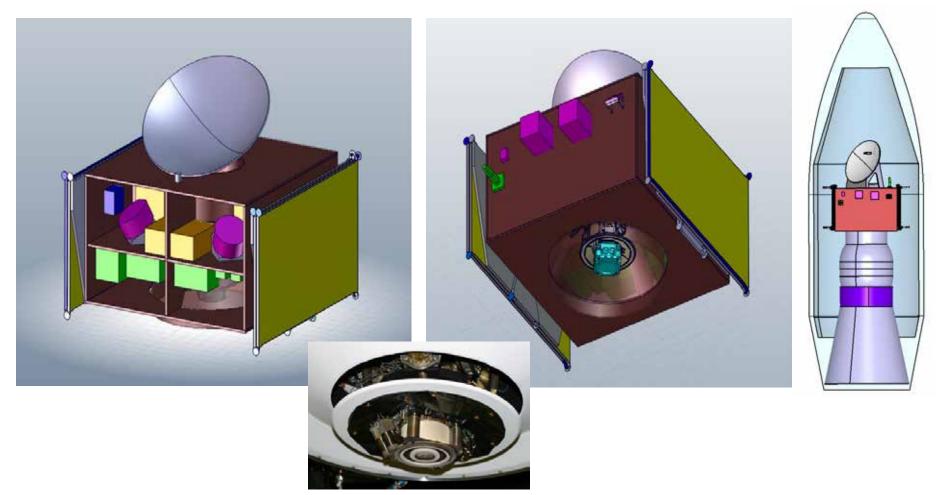
# **Payload Options**








## Interplanetary transfer (EP option)


| Launch                         | 19/08/2019 |
|--------------------------------|------------|
| Escape velocity [km/s]         | 1.0        |
| Declination [deg]              | -14.46     |
| Escape mass [kg]               | 400        |
| Earth swing-by                 | 07/11/2020 |
| Infinite velocity at SB [km/s] | 5.44       |
| Vel. at pericentre [km/s]      | 10.8       |
| Pericentre altitude [km]       | 2854       |
| Arrival                        | 01/08/2022 |
| Final mass [kg]                | 324        |
| SEP delta-v [km/s]             | 2.9        |
| Xenon consumption [kg]:        | 73         |
| Hydrazine consumption [kg]:    | 5          |
| Thruster on time [d]:          | 213        |
| Total Impulse[10^6kg m/s]:     | 1.05       |







# **AIM Spacecraft Concept**



19





## AIM Mass Budget

| Propulsion Stage Mass (kg)   |         |  |
|------------------------------|---------|--|
| Structure                    | 23.21   |  |
| Clampbands S/C I/F           | 6.60    |  |
| S/C adaptor                  | 16.61   |  |
| Mechanisms                   | 35.20   |  |
| Clamp Band spin table        | 14.30   |  |
| Spring set spin table        | 3.30    |  |
| Clamp Band prop module       | 14.30   |  |
| Spring set prop module       | 3.30    |  |
| Propulsion                   | 137.55  |  |
| SRM Star 48                  | 137.55  |  |
| Dry Mass Propulsion<br>Stage | 195.96  |  |
| Propellant STAR 48           | 1222.00 |  |

| Rendezvous S/C Mass (kg) |        |  |
|--------------------------|--------|--|
| Dry Mass w.o. margin     | 269.60 |  |
| Dry Mass + 20% margin    | 323.52 |  |
| Propellant Hydrazine     | 9.00   |  |
| Propellant Xenon         | 73.00  |  |
| Wet Mass                 | 405.52 |  |





### A Simpler Mission than Don Quijote

| DQ                                                 | AIM/DART                                                             | Comment                                                                |
|----------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|
| 2 s/c launched                                     | 2 s/c launched                                                       | AIM and DART C/D phase                                                 |
| separately                                         | separately                                                           | independence                                                           |
| Impactor launched after Orbiter rdv                | AIM launched to rdv (in principle) before DART hits                  | AIM and DART still fully meaningful in absence of the other spacecraft |
| NEA CoG Δa ≥ 100 m                                 | Binary ΔP/P>0.1, no requirement on Δa                                | Measure in-space (CAM) and ground (photometry),                        |
| Orbiter and RSE required                           | Co-flying, orbiting or RSE not strictly required                     | Simple telecom subsystem and operations possible                       |
| In-situ experiment only at end of mission          | In-situ as an option,<br>likely after impact                         | Secondary p/I depends of mass, operations cost, PI contribution        |
| Autonomous optical navigation 2 days before impact | Autonomous optical<br>Autonav as an option<br>for AIM, not mandatory | Technology experiment for rendezvous spacecraft                        |







### AIDA: affordable, low risk cooperation

#### § Science

- Visit a binary near-Earth asteroid
- Estimate internal structure and composition
- Measure crater formation and redistribution of material

### § Planetary Defense

- Understand kinetic impact effects for future deflection technologies
- Estimate momentum transfer by impact and by enhancement of ejecta

### § ESA Call for AIDA Payload Ideas

NEO Mitigation International Workshop on Friday



### **BACKUP**

5/29/2012 23





### Overlapping Goals of NEO Missions

#### Planetary Defense

Deflection demonstration and characterization

Orbital state Rotation state Size, shape, gravity Geology, surface properties Density, internal structure

Sub-surface properties Composition (mineral, chemical)

#### Human Exploration

Orbital state
Rotation state
Size, shape, gravity
Geology, surface properties
Density, internal structure
Composition (mineral, chemical)
Radiation environment
Dust environment

5/29/2012

#### **AIDA**

Deflection demonstration and characterization Orbital state Rotation state Size, shape, gravity Geology, surface properties Density, internal structure Sub-surface properties

#### Science

Orbital state
Rotation state
Size, shape, gravity
Geology, surface properties
Density, internal structure
Sub-surface properties
Composition (including
isotopic)

#### Resource Utilization

Geology, surface properties
Density, internal structure
Sub-surface properties
Composition (mineral, chemical)

APL





# Science Objectives

- § First measurements of spacecraft hypervelocity impact experiment
  - Beta factor highly uncertain
- § First cratering experiment on a NEO using a known impactor at known incident velocity
  - Pin down cratering histories and surface ages of inner solar system bodies, relating them to impactor populations
  - Opportunity for seismic measurements







# Science Objectives

- § Measure or infer surface properties of NEO
  - Strength, density, porosity
  - Inferences on internal structure of a binary asteroid companion
  - Implications for binary formation scenarios
- § Spacecraft impact may expose subsurface material to depths of many meters





# Planned NASA Involvement and Contributions



#### NASA contributions to AIDA mission

- Follow-up ground-based characterization
  - Photometry/Lightcurve
  - Radar
  - Spectroscopy
  - Orbital Dynamics
- Mission concept analysis and development
- Team members on observing and characterization spacecraft (ESA's AIM)
- Secondary impact spacecraft (APL's DART)
- DSN coverage for critical events



### AIDA Connections to NASA Interests

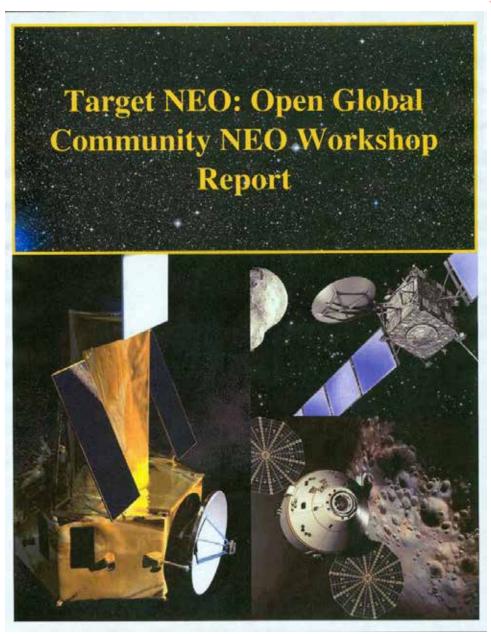


#### Science

- Conduct a visit to a binary near-Earth asteroid
- Detect possible mass transfer between primary & secondary bodies
- Measure crater formation and redistribution of material
- Estimate internal structure and composition

#### Planetary Defense

- Understand kinetic impact effects for future deflection technologies
- Estimate momentum transfer by impact and by enhancement of ejecta


#### Exploration

- Coordinate international deep space mission operations
- Develop flight techniques and experience for small body missions
  - Optical navigation and acquisition
  - Rendezvous
  - Proximity Operations
- Plan and perform detailed characterization



NASA

- Target NEO Global Community
  Workshop (February 2011) confirmed
  the critical necessity for a Spacebased Survey Mission for both NEO
  mitigation and exploration
  (http://www.targetneo.org/)
- •A companion international workshop was held in conjunction with the PDC on 13 May 2011. NEO Survey priority was confirmed, and second priority defined for a NEO Mitigation Demonstration Mission
- Next step: Introduce a mitigation demonstration mission both for US stakeholders and for ESA stakeholders in preparation for an element within the SSA Programme
- •Our global response to this next step....



5/29/2012 APL 29



### **Didymos for AIDA**



#### Discovered in April 1996 by Spacewatch

2 years before NASA accepted Congressional mandate

#### • It is a NEO (Apollo group)

- Also a Potentially Hazardous Asteroid (PHA)
- Relatively low delta-V target for rendezvous missions

#### Follow-up characterization

- Lightcurve observations in Nov. 2003 showed that Didymos was binary (Pravec, P. *et al.*, 2006).
- Additional observations from Arecibo confirmed it was binary (Benner, L. et al., 2010).