2013 IAA PLANETARY DEFENSE CONFERENCE BEAST BINARY ASTEROID ORBIT MODIFICATION

© GMV, 2013 Property of GMV All rights reserved

TABLE OF CONTENTS

- 1. Mission Concept
- 2. Asteroid Selection
- 3. Physical Principles
- 4. Space Segment
- 5. Conclusions

2013 PDC MISSION CONCEPT

OBJECTIVES

ESA study description

- Modify and measure the orbital period of small secondary body of binary asteroid
- Overall mission cost below 150 M€
- Reference scenario
 - Mass secondary 250 Ton (D > 5 m)
 - ΔV 0.8 mm/s
 - Duration < 3 years</p>

BEAST mission

- Demonstrate feasibility to perform impact and measure deflection
- Provide envelope of missions

BEAST MISSION

Re-use commercial platform (cost-driven)

- Keep low cost of space segment
- Minimize risk of technology development

Reference mission architecture (preliminary trades)

Single, chemically propelled SC

ASTEROID ORBIT MODIFICATION

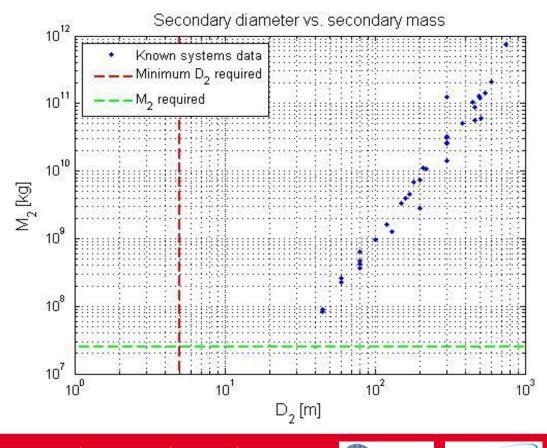
- Direct launch into escape trajectory
- Operational procedures based on ROSETTA experience

2013/04/16 Page 5 © GMV, 2013

esa

- Modified commercial platform carrying as payload
 - Impactor ("dead mass") + release mechanism
 - Additional sensors for near-asteroid operations

2013 PDC ASTEROID **SELECTION &** IMPACT ANALYSES



BINARY ASTEROID ASSESSMENT

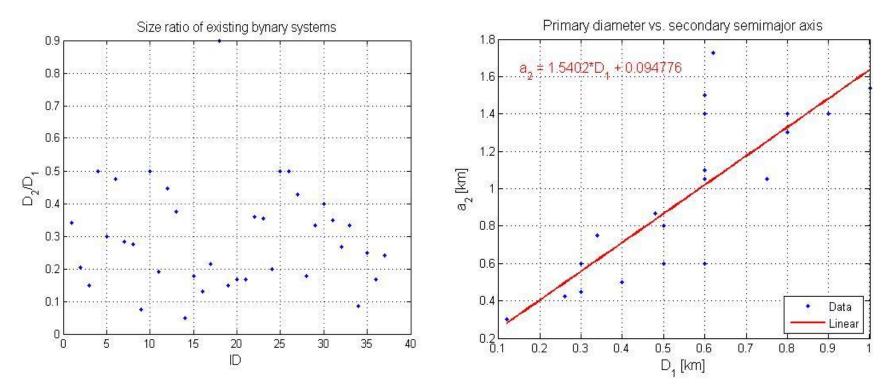
- Provide list of potential targets for mission analysis
 Starting point known binary asteroids
 - Larger mass and diameter than reference requirements
 - 'Deflectable' secondary (impactor momentum)

BEAST - LOW COST MISSION FOR BINARY ASTEROID ORBIT MODIFICATION

2013/04/16 Page 7 © G

ge 7 © GMV, 2013

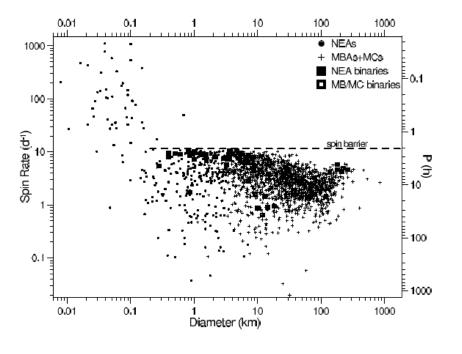
esa


ThalesAle

POTENTIAL BINARY ASTEROIDS (1/2)

- Analysis of single asteroids that could host a secondary
 - Focus on small bodies

ASTEROID ORBIT MODIFICATION


- Estimate envelope of binary system properties
 - Masses and diameters of primary and secondary
 - Orbit of secondary around primary

POTENTIAL BINARY ASTEROIDS (2/2)

- Small asteroids with some likelihood to have suffered rotational disruption
 - Estimate angular momentum of binary asteroids (within envelope)
 - Estimate primary asteroid rotational angular momentum
 - Identify current single asteroids matching angular momentum
- Three groups of asteroids considered for mission design

Heliocentric parameters	2009 UD		
$D_2[m]$	5.000		
$D_1[m]$	16.799		
$M_2[kg]$	2.500E+05		
$M_1[kg]$	8.460E+06		
a ₂ [m]	120.650		

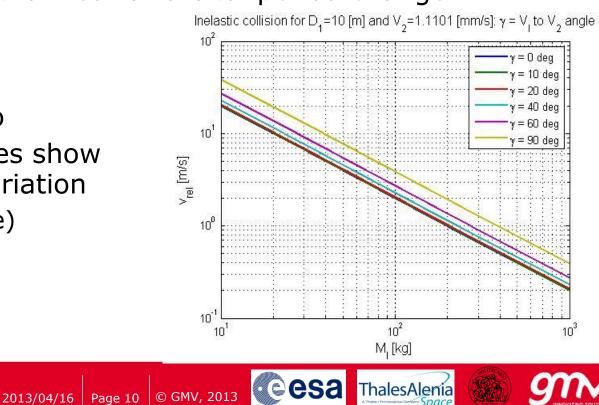
Heliocentric parameters	54509 YORP 2000
$D_2[m]$	20.000
$D_1[m]$	67.195
$M_2[kg]$	2.500E+05
M ₁ [kg]	8.460E+06
$a_2[m]$	198.272

COST MISSION FOR BINARY ASTEROID ORBIT MODIFICATION

Page 9 2013/04/16

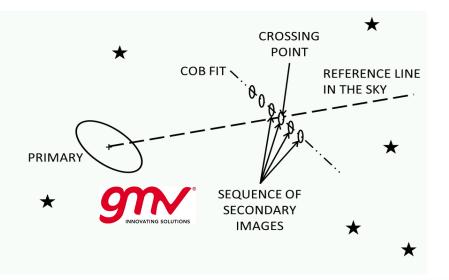
© GMV, 2013

esa ThalesA


MOMENTUM TRANSFER & MOID

Momentum transfer analysis

- Definition of envelope for asteroid selection and mission design
- Conservative analyses for impactor mass
 - Perfect inelastic collision (blunt-shaped impactor)
 - No momentum enhancement due to ejecta
- Small `misalignment' aimed for orbital period change


MOID variation

- Worst case scenario
- Reference candidates show very small MOID variation
 - ~0.1 m (worst case)

IMPACT $\triangle V$ **ESTIMATION** (2/2)

- Analysis of feasible techniques to estimate effect of impact
 - Determination of orbital period change due to impact
 - Ground based estimation using **camera only** measurements
- Observation of secondary asteroid transits
 - Several revolutions to improve accuracy (care of perturbations)
- Delta-V to secondary might be estimated with RMS < 3%</p>
 - Large primaries (secondary period < 1 day)
 - For small primaries the delta-V should be smaller to avoid escape

Period change	2.14 h	0.65 h
Relative change of the period	11 %	4.6 %
RMS of the measured period	111 s	60 s
RMS of the relative error of the period change	1.44 %	2.56 %

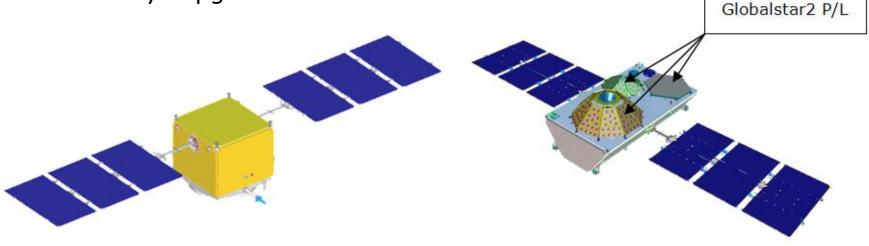
ThalesA

esa

★

2013/04/16 Page 11 © GMV, 2013

2013 PDC **SPACE SEGMENT**



MAJOR TRADE-OFFS

- Cost-driven system trades
- Commercial platform re-use (Iridium or Proteus Mark-II)
 - Direct escape launch (Soyuz Fregat 2-1b)
 - Mono-propellant propulsion system
 - Impactor and GNC equipment included as payload
- Major remaining system trades
 - Propellant tank upgrades
 - Solar arrays upgrades

Proteus Mark 2 platform (without any P/L)

Iridium Platform (with Globalstar2 P/L)

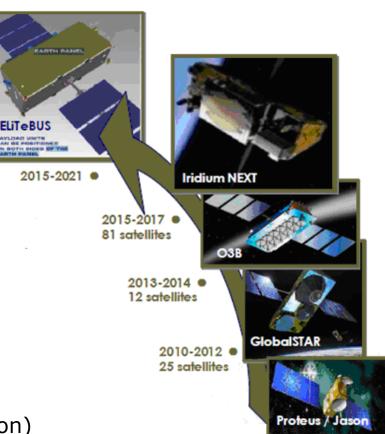
CONSIDERED PLATFORMS

Proteus Mark 2

- Case P1

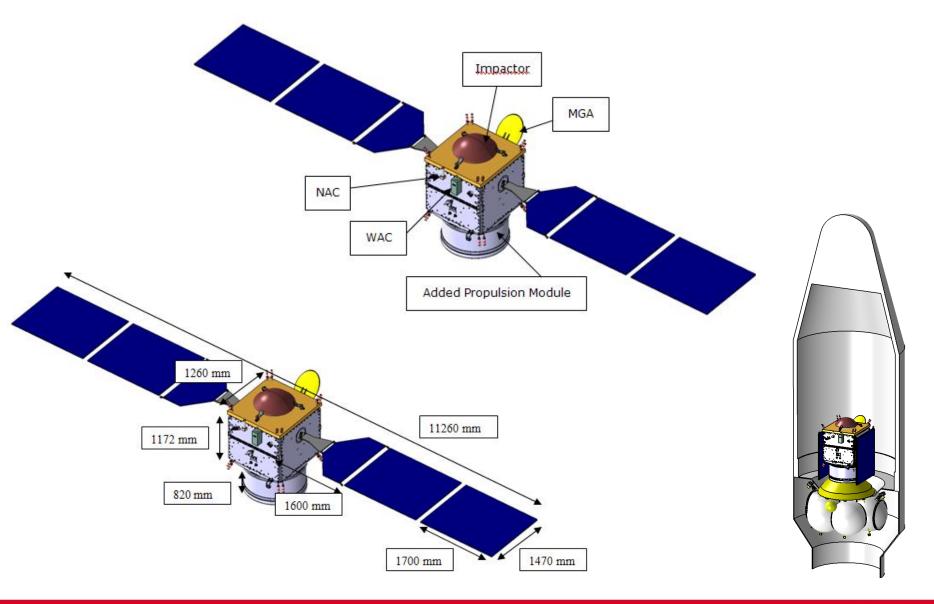
- 400 kg hydrazine
- 10 m² solar array
- Iridium NEXT platform cases

- Case I1


- 300 kg hydrazine
- 10 m² solar array

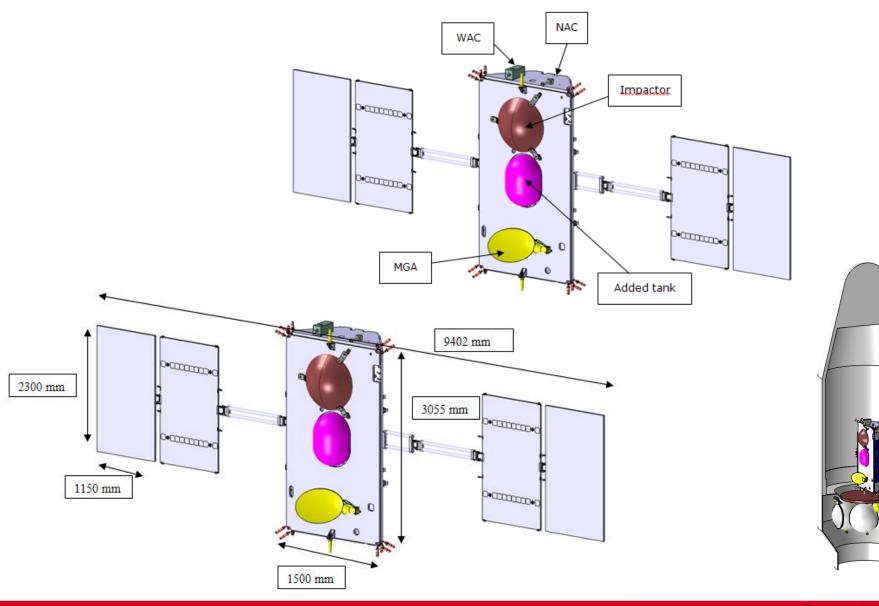
- Case I2

- 160 kg hydrazine (no tank upgrade)
- 10 m² solar array


- Case I3

- 160 kg hydrazine (no tank upgrade)
- 5 m² solar array (solar array area reduction)

PROTEUS MARK 2 OVERVIEW


BEAST - LOW COST MISSION FOR BINARY ASTEROID ORBIT MODIFICATION

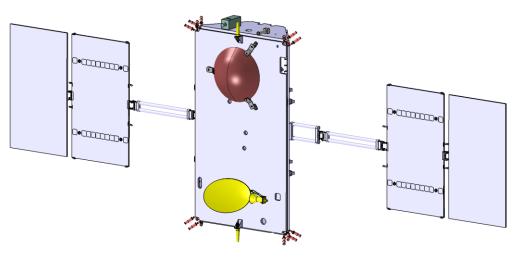
2013/04/16 Page 15 © GMV, 2013

esa

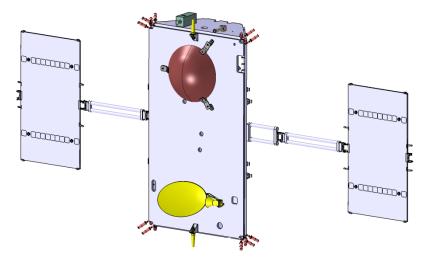
ThalesAlenia

IRIDIUM NEXT I1 OVERVIEW

BEAST - LOW COST MISSION FOR BINARY ASTEROID ORBIT MODIFICATION


2013/04/16 Page 16 © GMV, 2013

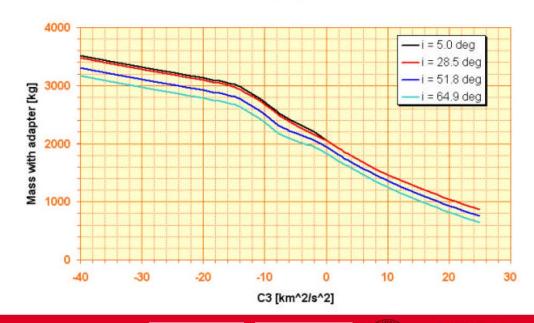
ThalesAlenia Space


esa

IRIDIUM NEXT I2 & I3 OVERVIEW

Iridium NEXT case I2

Iridium NEXT case I3



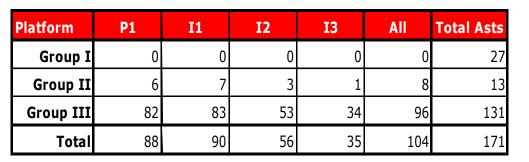
MISSION ANALYSIS

- Exhaustive search of trajectories
 - Three groups of asteroids
 - Direct transfer and ∧V-EGA
 - Mono-prop & bi-prop
 - Four platforms
- Constraints
 - Launcher capability
 - Duration
 - Propellant mass
 - Max. distance to Sun
- Navigation analyses
 - Radiometric measurements only (no $\triangle DOR$)

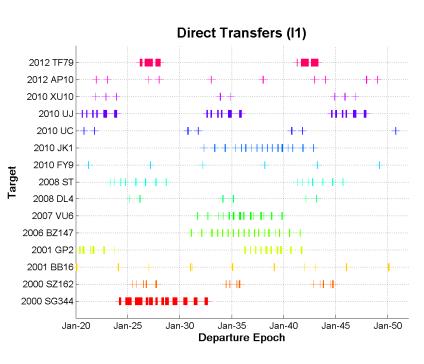
Platform	P1	I1	I2	13
Dry Mass [kg]	719.9	646.8	620.4	598.3
Propellant Mass [kg]	400	300	160	160
Adaptor Mass [kg]	110	140	140	140
Launch Mass [kg]	1229.9	1086.8	920.4	898.3

Soyuz ST version 2-1b + Fregat performance from Kourou

ThalesA


OW COST MISSION FOR BINARY ASTEROID ORBIT MODIFICATION

2013/04/16 Page 18 © GMV, 2013


esa

MISSION ANALYSIS SUMMARY

- Different asteroids reachable by Proteus and Iridium I1
 - Iridium I2 and I3 much less capable (low delta-V)
- Bi-propellant would increase the reachable targets
- Different targets reached with ΔV -EGA trajectories
 - Few years of duration increase (1:1, 4:3, 3:2)
 - Different effect on different platforms

Direct Mono-prop

esa

Thales/

2013/04/16 Page 19 © GMV, 2013

ADDITIONAL PAYLOAD CAPABILITY

- GNC cameras (WAC + NAC) considered in the power budget
- 257 W for payload are available during proximity operations
- Most asteroids show mass margin for additional payload (science experiments or technology demonstrations)

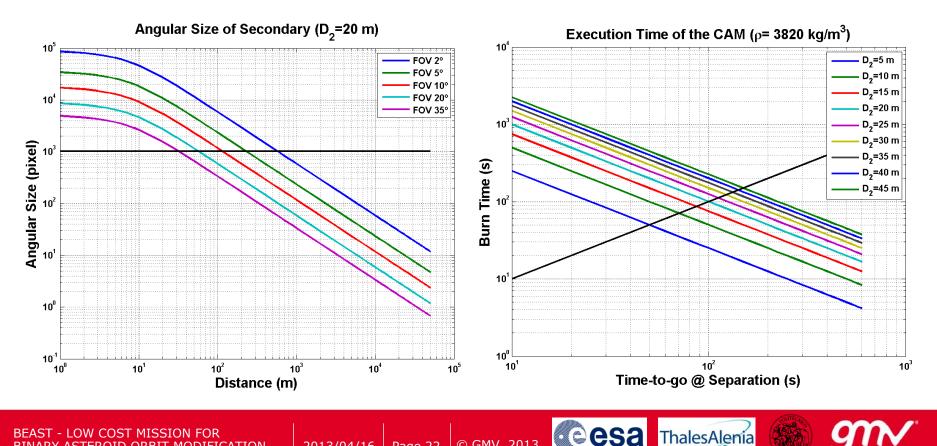
NEA	(P1) Extra Mass [kg]	(I1) Extra Mass [kg]	(I2) Extra Mass [kg]	(I3) Extra Mass [kg]
2000 SG344	801.2	846.0	872.4	894.5
2000 SZ162	362.4	404.7	369.7	391.8
2001 BB16	344.9	390.8	417.2	439.3
2001 GP2	622.0	666.4	692.8	714.9
2006 BZ147	474.8	521.4	547.8	502.8
2007 VU6	490.0	486.1	137.9	160.0
2008 DL4	472.2	519.5	467.0	489.1
2008 ST	460.2	506.5	532.9	555.0
2010 FY9	171.3	207.4	107.0	129.1
2010 JK1	208.8	206.6	193.1	130.2
2010 UC	373.0	420.9	242.2	264.3
2010 UJ	602.6	649.9	661.6	683.7
2010 XU10	460.9	507.2	533.6	555.7
2012 AP10	298.6	345.2	371.6	393.7
2012 TF79	636.5	603.7	57.9	80.0

Cesa

ThalesA

BEAST - LOW COST MISSION FOR BINARY ASTEROID ORBIT MODIFICATION

2013/04/16 Page 20 © GMV, 2013


GNC ASSESSMENT

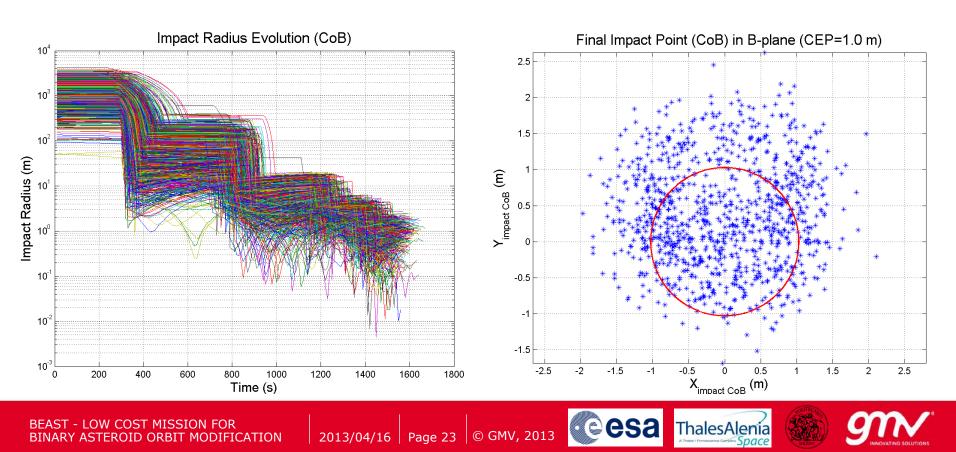
- Nominal equipment from commercial platform
 - 4 reaction wheels (8 Nms, 75 mNm)
 - 2 IMU
 - 3 star trackers plus 2 electronic boxes (Sodern Hydra model)
 - 2 coarse sun sensors
- Propulsion: 8 (+8 redundant) 20 N mono-prop
- Additional equipment
 - 1 (+1 redundant) Wide Angle Camera
 - 1 (+1 redundant) Narrow Angle Camera
 - 1 FPGA for IP with HW/SW algorithms implementation
- Spare room for additional sensors (radar altimeter)
- GNC for impact phase is most critical
 - Fully autonomous (on board estimation of time-to-impact)
 - Divert manoeuvres (predictive impulsive) to cancel impact radius
 - Centre-of-brightness estimation from image processing

esa

IMPACT PHASE ASSESSMENT

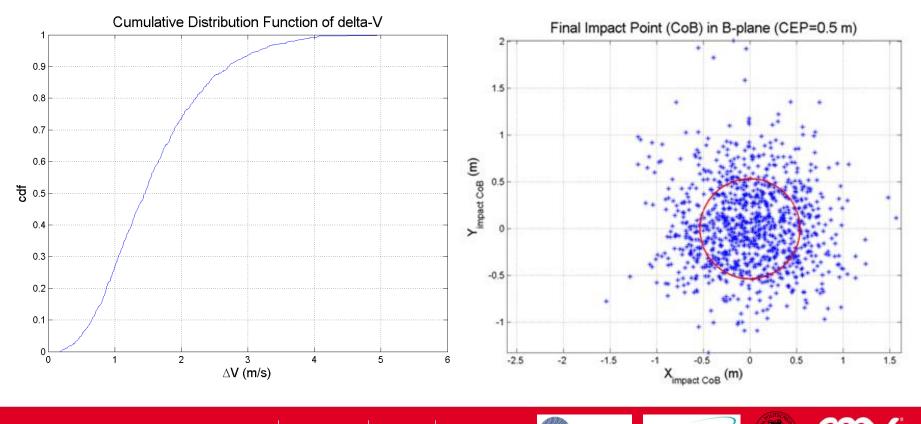
FOV driven by secondary size & distance at last manoeuvre No detectability problems for faintest secondary ($D_2 = 5 \text{ m}$) Resolvable binary system with WAC and close orbit (100 m) CAM limits minimum time-to-go for impactor release

- LOW COST MISSION FOR BINARY ASTEROID ORBIT MODIFICATION


2013/04/16 Page 22 © GMV, 2013

ThalesAle

IMPACT PERFORMANCES


Closed loop simulation of impact phase

- Start at safe haven with large initial dispersion (1 km)
- Relative velocity 20 m/s (tangential impact sought)
- Target 5 m diameter
- Critical parameter is the time-to-go at separation

IMPACT PERFORMANCES

- Simulations show max time of separation is 60 s
- Major sources of error
 - Manoeuvre execution errors (thrusters misalignment, MIB and noise)
 - Navigation errors from IP and poor observability at small miss dist.

esa

ThalesAle

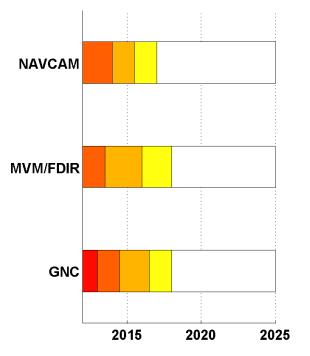
BEAST - LOW COST MISSION FOR BINARY ASTEROID ORBIT MODIFICATION

2013/04/16 Page 24 © GMV, 2013

2013 PDC CONCLUSIONS

PRELIMINARY COST ASSESSMENT

- Assessment of ground segment
 - Development of new systems (SIM, MPS, FDS)
 - Recurrent costs with conservative autonomy assumptions
- Cost of space segment
 - Platform upgraded for interplanetary mission
 - Impactor + release mechanism + on-board SW + cameras


Segment Launcher		Ground	Space			
			Proteus Mk2 P1	Iridium I1	Iridium I2	Iridium I3
Nominal Cost (M€)	47.0					
Margin	10%	25%	20%	20%	20%	20%
Cost (M€)	51.7					
Percentag e of total cost						
TOTAL			159.2	136.9	135.4	130.8

TECHNOLOGY ROADMAP

- Relatively high reuse of technologies and platform reduces development time and cost
- Assuming Phase B KO in Q1 of 2015, launch could be
 - 2019 for Option 1 (P1, I1)
 - 2018 for Option 2 (I2, I3)
- TRL 7 for critical technologies could be achieved in 2018
 - More analysis on integration into overall platform AIT/AIV program
- Additional optimizations for defined target could be performed

ThalesA

esa

2013/04/16 Page 27 © GMV, 2013

8

6

5

4

3

2

SUMMARY

- Feasibility of reused commercial platform for binary impact
- Impactor and GNC system included as payload
- Platforms cover different missions (targets, cost) for flexibility
- Room (power, mass, cost) for additional P/L and/or experiments

Option	Proteus P1	Iridium I1	Iridium I2	Iridium I3
Propellant mass [kg]	400	300	160	160
Solar array area [m2]	10	10	10	5
Additional payload mass [kg] (2008ST)	444.7	491.9	387.9	410.0
Dry mass [kg]	719.9	646.8	620.4	598.3
Wet mass [kg]	1119.9	946.8	780.4	758.3
Launch mass [kg]	1229.9	1086.8	920.4	898.3
Number of targets (Direct, Mono-Prop)	88	90	56	35
Number of targets (Direct, Bi-Prop)	115	112	85	46
Number of targets (ΔV-EGA, Mono-Prop)	100	87	39	20
Number of targets (ΔV-EGA, Bi-Prop)	128	113	71	40
Cost (M€)	159.2	136.9	135.4	130.8

esa

Thales

Thank you

Jesus Gil-Fernandez Project Manager Email: jesusgil@gmv.es www.gmv.com

