

Planetary Defense Conference 2013 Flagstaff, USA

IAA-PDC2013-04-15

OSIRIS-REx Techniques Applied to Earth-Crossing Object Deflection

April 2013

Presentation by: Ron Mink

Authors: James Russell, Ron Mink, William Boynton, Dante Lauretta, Ed Beshore, Brian Sutter, and Beau Bierhaus

OSIRIS-REX

Introduction

- § OSIRIS-REx = Origins, Spectral Interpretation, Resource Identification, Security Regolith Explorer
- § Third mission in NASA's New Frontier Program, following New Horizons and JUNO
- § Topics
 - § OSIRIS-REx mission
 - § Hazard Assessment
 - § PHA Deflection Concepts
 - § OSIRIS-REx Applications to PHA Missions
 - § Summary

OSIRIS-REx Mission

Key Objectives

- Return and analyze a sample
- Map the global properties, chemistry, and mineralogy
- Document the sample site to sub-cm resolution
- Measure the Yarkovsky effect
- Characterize the integrated global properties for direct comparison with ground-based telescopic data

OSIRIS-REx Mission Phases

- § Approach Phase
 - Initial asteroid characterization
 - Natural satellite survey
- § Survey Phase
 - Mass, size, shape, and rotation state
 - Global composition maps and gravity model
- § Reconnaissance Phase
 - Low-altitude flyovers of potential sample sites
- § Sample Collection Phase
 - Sustained proximity operations in low-gravity environments
 - Multiple rehearsals and sampling from staging orbit
 - Closed-loop GN&C maneuvers
 - Surface contact with regolith collection

Hazard Assessment

- § OSIRIS-REx science will improve confidence in long-term impact predictions
 - Refine measurement of the Yarkovsky effect on the orbit of 1999 RO36
 - Detailed thermophysical model of 1999 RQ36 developed from remote sensing data used to predict Yarkovsky effect
 - Model prediction correlated to measurement

RQ36 Thermal Model

- § OSIRIS-REx science will improve confidence in determination of asteroid properties relevant to mitigation from Earth-based observations
 - Properties include mass, size/shape, spin state, and surface composition
 - Provides "ground truth" for 1999 RQ36 properties estimated from Earthbased (ground and space) observations

PHA Deflection Concepts

- § Minimize mass intercepting the Earth
- § Low-energy deflection
 - Thermo-optical properties modification
 - Push-pull: ion-beam, gravity tractor
- High-energy deflection / disruption
 - Standoff nuclear* explosion, kinetic-energy impactor
 - Surface / subsurface nuclear* explosion
 - Mass driver
- § High-energy options in general require an "observer" spacecraft to
 - Observe the deflection/disruption event
 - Track the deflected object or dispersed objects – to confirm success

^{*}Note: Because of restrictions found in Article IV of the *Treaty on Principles Governing the Activities* of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies, it is presumed the use of a nuclear device would require prior international coordination

Knowledge Needs to Enable Deflection Missions

Table 1. Knowledge Needs for PHA Mitigation Missions

	Hazard Assessment	Low-Energy Deflection	High-Energy Deflection
Object Location (Ephemeris)	X	X	X
Small Force Effects:	X	X	X
(Solar Pressure, Yarkovsky)			
Hazards (Natural Satellites around		X	X
Object, Volatiles)			
Size, Mass, Shape, and Rotation State	X	X	X
Mass Distribution		X	X
Gravity Model for Stable Orbits		X	X
Object Interior Composition			X

- § Hazard assessment requires knowledge of object trajectory, orbit deviations due to small forces, and NEO properties
- § Asteroid deflection requires knowledge of the operational tools and techniques from sustained operation in proximity to an asteroid
- § OSIRIS-REx science and mission architecture provides this knowledge

OSIRIS-REx Techniques

Table 2. OSIRIS-REx Techniques Applicable to PHA Mitigation Missions

OSIRIS- Techniques	Low-Energy Deflection	High-Energy Deflection				
	Ion-beam, gravity tractor	Standoff Explosion	Kinetic- energy	Subsurface Explosion	Surface Explosion, Mass	
Acquire Object	X	X	impactor X ^b	X	driver X	
Detect Natural Satellites	X	X	X ^a	X	X	
Establish Size/Shape/	X	X	X ^a	X	X	
Rotation State						
Establish Gravity Model	X	X	X^{a}	X	X	
Maintain Long-Term Stable Orbit	-	X	X^{a}	X	X	
Position Relative to the	X^{b}	X^{b}	$X^{a,b}$	X^{b}	X^{b}	
Surface						
Contact the Surface	-	-	X^{b}	X^b	X^{b}	
Determine Asteroid /	X	X	X	X	X	
Fragment Ephemeris						

Note: a) required to operate an observer spacecraft, b) closed-loop control, and c) operate for a time period of weeks to years

- § Sustained proximity operations in near asteroid environment
- § Platform applies to both asteroid deflection and observer roles

Summary

- § OSIRIS-REx science, platform and operational techniques apply to the asteroid deflection problem
 - Improves hazard assessment by measuring the Yarkovsky effect and providing "ground truth" for Earth-based observations
 - Asteroid deflection role
 - Characterizes bulk and surface properties before approaching the surface
 - Performs sustained proximity operations from a few meters to several radii from the surface
 - Demonstrates closed loop GN&C maneuvers to touch the surface (needed to place deflection device on or in proximity to the asteroid surface)
 - Observer role
 - Characterizes bulk and surface properties before and after deflection event
 - Observes the deflection event
 - Verifies success of deflection event by tracking main body and fragments
- § OSIRIS-REx is a pathfinder for future asteroid deflection missions