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Abstract

With increased awareness of the possibility of an asteroid impacting the Earth, there is a corresponding increased
interest in developing techniques for mitigating the asteroid impact threat. One such concept is the hypervelocity
asteroid intercept vehicle (HAIV). Hypervelocity target intercept using autonomous optical navigation strategies
has been demonstrated by the Deep Impact mission to the 5-km comet Tempel 1. Potentially hazardous objects are
as small as 50 meters in diameter, meaning that an advanced autonomous navigation and precision terminal guid-
ance system is needed for the HAIV mission. This paper describes GPU-based optical navigation and guidance
simulation of a HAIV during its terminal phase operation to intercept a small, 50-m class target asteroid.

Keywords: Optical navigation, terminal-phase guidance, GPU, hypervelocity asteroid intercept vehicle (HAIV)

1. Introduction

As potential asteroid threats to the Earth are being discovered, new and innovative missions must be designed to
address the range of threats. New asteroid intercept spacecraft will need to incorporate autonomous navigation and
guidance strategies for successful mitigation missions. The Deep Impact mission demonstrated the use of optical
navigation and a terminal guidance scheme for a hypervelocity (10.3 km/s) intercept of a target comet [1, 2].
The successful collision with comet Tempel 1 (diameter of approximately 5 km) was achieved by pin-pointing a
location on the sunlit side of the object, then guiding to this region. Design of a hypervelocity asteroid intercept
vehicle (HAIV) that can potentially operate in a relative speed range of 10 to 30 km/s have been studied by Pitz et
al. [3]. In the design of interest, the HAIV separates into two bodies, similar to the Deep Impact mission. The fore
body creates a crater, and the aft body delivers a nuclear explosive device (NED) to the crater’s interior. Delivering
and detonating a NED creates sufficient energy, ranging from 300 kt to 2 Mt of TNT, to disrupt the target asteroid.
Figure 1 illustrates a baseline notional design, related to that shown by Pitz et al. [3] as well as a terminal phase
concept.

This paper describes the preliminary implementation of a GPU (Graphic Processing Unit) based optical navi-
gation and guidance simulation of terminal phase hypervelocity intercept of a scaled 433 Eros polyhedron model.
Using this model does not limit the utilization of other known asteroid shape archetypes. Data for this model has
been obtained from the NEAR collected shape models [4]. Scaling this model by a factor of 333 generates an
asteroid with a 50-m diameter, considered to be a lower limit for asteroids that may require hypervelocity inter-
cept. A lighting and diffusion model creates a realistic simulated image, which can then be projected onto the
camera plane, yielding realistic sensor inputs to drive the guidance algorithms. The camera model is based on
flight-proven cameras used in previous missions.

With simulated images of the lit asteroid, the center of brightness (COB) of the figure can be determined for
the guidance and navigation operations. The COB is calculated from light intensity of each camera pixel. The
calculated COB is used to estimate the line-of-sight (LOS) vector from the spacecraft to the target. Knowledge
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Figure 1: A baseline two-body HAIV mission concept.

of the LOS vector at different time steps yields a calculated LOS rate. Several different guidance laws are used,
including classical proportional navigation (PN) and predictive guidance laws.

Along with simulation of camera images, this paper will demonstrate the plausibility of an asteroid impact for
a two-body (comprised of fore and aft bodies) spacecraft separating at 60 seconds before the final intercept occurs.
The separation mechanism concept is taken from the Deep Impact mission, where the impactor separated from
the flyby spacecraft at a relative speed of approximately 36 cm/s. Imaging by a flyby craft has also been studied
in multiple missions, such as Deep Space 1. Once the fore and aft body separation occurs, no additional control
input is applied.

2. Rendering the Simulated Camera Data

2.1. 3D Target Polygon Model
This section addresses the rendering of the images in simulation memory that correspond to camera data to be

processed by the spacecraft. We begin with a triangulation of surface points represented as a 3D wireframe polygon
model. The target model is derived from data for the asteroid 433 Eros [1] collected by the NEAR mission, and
has 200,700 faces [5]. This number of faces corresponds to the variable n f of the computer model. Generally, the
number of vertices needed to fill out the model, nv, is strictly less than n f , so it is more computationally efficient
to do calculations on the vertices where possible. However, much of our information depends in some sense on
an orientation of the body surface, for which the faces are necessary. A connectivity array stores the relationships
between each set of vertex data and which face it applies to. If R1, R2, and R3 are the position vectors for the
vertices of a face, as shown in Figure 2, then we have Xi, Yi, and Zi for a ≤ i ≤ n f , defined as

Xi = R2 − R1 Yi = R3 − R1 Zi = (R1 + R2 + R3) /3 (1)

The unit normal vectors of each face are calculated and stored as

Ni = Xi × Yi, Ni · Zi > 0 (2)

The wireframe model uses a known rotation state of the target, though this information is not available to the
spacecraft. A rotation matrix is applied to the initial conditions so that a simulated “real” state is known for the 3D
model. To complete this system description, we require a unit sun vector, Ŝ, in the direction of the sun from the
target and a unit view vector, V̂, in the direction of the spacecraft from the target. We assume that the true center
of mass of the target is at the origin on this coordinate system.

2.2. Camera Pointing and Focus Plane
In order to decouple the attitude and translation mechanics of the present simulation system, a “perfect” point-

ing was adopted for the camera. Thus, the choice of estimated center of mass or previously computed center
2



Figure 2: Facet geometry definitions.

of brightness is at the center of the camera focal plane, with the camera needing zero time to adjust to the new
settings. Modifications to this scheme, including integration with spacecraft attitude are expected in the near
future.

The camera focal plane distance was chosen arbitrarily as the distance from the spacecraft to target. Since this
plane is perpendicular to V̂ we can project the 3D model onto this plane by subtracting the component along this
vector, thus the projected locations of the vertices are described by

P j = R j − V̂, 1 ≤ j ≤ 3 (3)

To save computational time and storage space, a condensed array of these values are computed only for the
faces satisfying Ni · V̂ > 0. This results in only the faces visible to the spacecraft. Due to the decoupling of the
camera dynamics, a direct orientation of this plane is not possible given the currently available information. Thus,
a direction for camera “up” must be chosen. We choose unit vectors Û and V̂ such that

Ŵ = Ŝ × V̂, Û = −V̂ × Ŵ (4)

Therefore, the sunlight will always come into frame from a horizontal direction, and “up” will always be
orthogonal to the plane containing the target, the sun, and the spacecraft. The coordinates of each vertex in this
plane can be computed as

P̃ j =
[
u j w j

]T
=

[
P j · Û P j · Ŵ

]T
(5)

At this point, what is visible to the spacecraft depends on camera parameters that interpret the “real” system.
The resolution and field of view for the cameras simulated are listed in Table 1. At each time step, these are used
to compute the half resolution of the image plane, Rh. If RT is the position vector representing the spacecraft in
the target frame, then this can be computed as

Rh = |RT | tan
(

1
2

fv

)
(6)

where fv represents the field of view in radians (assumed isotropic). If xr and yr represent the x and y resolu-
tions in the camera 2D pixel frame, then the information represented by each pixel corresponds to a size of 2Rh/xr

in the horizontal direction and 2Rh/yr in the vertical direction.

Table 1: Simulated camera parameters

High Medium
Resolution Resolution Infrared

Resolution (xr, yr) (pixels) 1024 x 1024 1024 x 1024 512 x 512
Field of View ( fv) (radians) 2.05 × 10−3 10.0 × 10−3 10.0 × 10−3

Pixel Size at 1,000 km (m) 2.0 9.8 19.5
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Figure 3: Parallel trim reduction technique.

2.3. Lighting Conditions

A simple flat shading model is used to calculate the brightness of the target surface. Given a diffuse lighting
coefficient, kd, and an ambient lighting coefficient, ka, the corresponding brightness attributed to each face of the
3D model is computed as

Ci =

 kd

(
Ni · Ŝ

)
+ ka Ni · Ŝ > 0

0 Ni · Ŝ ≤ 0
(7)

where a value Ci of 1 corresponds to perfect reflectivity of the incident sunlight at that distance. A greyscale
colormap is used for human visualization. The diffuse coefficient works closely in line with the albedo, and is
chosen to be 0.25 for the simulations. Since the cameras we are using have very little time to resolve detail of the
body, we assume that their lower threshold for brightness is very low and therefore ka = 0. This model is very
fast, and can be computed completely in parallel for each face.

When additional lighting detail is desired, the following interpolation model due to Gouraud [6] is used. Let
each vertex have a normal Ñ1, Ñ2, and Ñ3 computed as an average of the adjacent faces, found from inverting the
connectivity array. Then, a corresponding value for brightness at each vertex C̃1, C̃2, and C̃3 is computed using
the flat shading model equation. If a pixel representing the image plane at [u w]T is calculated to intercept this
triangle, then an inverse squared weighted average is assigned to the pixel, as follows:

C (u,w) =
α1

αT
C̃1 +

α2

αT
C̃2 +

α3

αT
C̃3 (8)

where αT = α1 + α2 + α3 and

α j =
1(

u − u j

)2
+

(
w − w j

)2 1 ≤ j ≤ 3 (9)

2.4. Pixel Value Assignment

For either the flat or interpolated shading models, the facet at which a pixel intercepts the target projection
must be determined. This is done on the GPU in parallel to reduce computational time, especially using a higher
fidelity target model. Each pixel is assigned coordinates in the u,w plane representing the center of the box over
which the pixel is integrated. This works well when the size of a pixel is on the scale of the surface facets, but
an averaged value needs to be used at greater distances. To determine the intercepted triangle, we first compute
the upper and lower bounds of each visible triangle in parallel. Then, a reduction is performed to get the outer
limits of the target in the UW system. This process is represented in Figure 3. Pixels outside of this range can
automatically be assigned a value of 0. In fact, only the location and value of nonzero image components are
stored in the present computational model.

The arrays containing the limits of each facet are sorted, and then a scan of these arrays is completed. This lets
us assign a vector of possible intersections for each pixel. This vector contains the IDs of all facets through which
the pixel passes through the bounding box. This is generally a low number. For each candidate intersection, the
convex hull of the triangle, Hi, is identified, as shown in Figure 1. This is projected onto the UW plane, forming
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the set H̃i shown in Figure 2. If X̃i and Ỹi are the projections of Xi and Yi in the UW plane, then the coordinates
of the pixel can be expressed as [

u
w

]
= P̃1 + d1X̃i + d2Ỹi (10)

which can be viewed as a transformation into the affine system defined by these two vectors. It is a well-known
result from geometry that the point [u w]T lies within the triangle if d1 > 0, d2 > 0, and d1 +d2 < 1. This generally
assigns a single facet as the possibility for intersection. However, at pixels near the boundary of the target, several
potential intersection may occur. In these cases, the closest triangle (largest Zi · V̂) is chosen.

2.5. Line of Sight Vector
For the present implementation, the estimated line of sight vector is chosen to be the center of brightness. If

I (u, v) is a matrix storing the values of brightness for the image, then the centroid of the image array is computed
using an weighted average, as follows:

ū =

∑
I (u, v) u∑
I (u, v)

; w̄ =

∑
I (u, v) w∑
I (u, v)

(11)

The line of sight vector in the spacecraft frame is therefore

Λ =

[
ū
w̄

]
− RT (12)

3. Orbital Dynamics of an Interceptor Spacecraft

The target asteroid can be modeled as a point mass in a standard heliocentric Keplerian orbit, as follows:

ṙT = vT

v̇T = g (13)

where rT and vT are the position of the velocity vectors of the target and g is the gravitational acceleration due to
the sun, expressed as

g = −
µ�rT

r3 (14)

where µ� is the solar gravitational parameter. Similarly, the motion of the spacecraft is described by

ṙS = vS

v̇S = g + a (15)

where rS and vS are the position of the velocity vectors of the spacecraft and g is again the gravitational acceler-
ation due to the sun, and a is the control acceleration provided by the control thrusters. In this paper, a boldfaced
symbol indicates a column matrix of a physical vector expressed in a chosen inertial reference frame.

In general, we have g = g (r, t) . For some guidance problems the gravitational acceleration can be consid-
ered constant or negligible, but for asteroid terminal guidance missions, the gravitational acceleration must be
considered a nonlinear function of position. There are some other disturbing accelerations that act on the space-
craft, such as radiation pressure and the gravitational acceleration due to the asteroid. However, intercept and
rendezvous missions to small asteroids can neglect these.

The relative position of the spacecraft with respect to the target is then described by

r = rS − rT (16)

The equation of motion of the spacecraft with respect to the target becomes

r̈ = g + a (17)

where g represents the sum of apparent gravitational accelerations on the target.

4. Guidance Laws

The guidance laws that will be used in the simulations will be presented here. A detailed derivation is not
included in this paper, but can be found in [8].
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Figure 4: Schmitt trigger logic.

4.1. Classical Proportional Navigation (PN) Guidance
The classical proportional navigation (PN) guidance law commands accelerations perpendicular to the Line-

of-Sight (LOS) direction. The PN guidance law is expressed as

a = nVcλ̇ (18)

where a is the acceleration command, n is the effective navigation ratio, a designer-tunable parameter, Vc is the
closing velocity, and λ̇ is the line-of-sight rate.

For implementation in 3D coordinates, it is easier to work with the LOS vector, defined as

Λ (t) =
r (t)
r (t)

(19)

The line-of-sight rate is then denoted as Λ̇ (t). The PN guidance law is expressed in 3 dimensions as

a = nVcΛ̇ = nVc

Λ̇x

Λ̇y

Λ̇z

 (20)

4.1.1. Pulsed Guidance
For simple asteroid intercept, the terminal velocity is not specified, and is assumed to be the closing velocity

for PNG. The PNG law assumes that continuously variable thrust is available. For thrusters with no throttling
ability, a different approach to guidance laws is needed. Two approaches to formulating guidance laws for fixed-
thrust-level (on-off) guidance laws are PN-based guidance laws and predictive guidance laws.

The PNG law continuously generates acceleration commands to achieve intercept. Due to its feedback nature,
PNG will continue to generate guidance commands until intercept is achieved. A special case of PNG occurs
when the interceptor is on a direct collision course. When this is true, the guidance commands will be zero. When
using PNG logic, then, an acceleration command of zero means that the interceptor is instantaneously on a direct
collision course. This fact can be exploited to use PNG logic for constant-thrust engines.

Pulsed PNG (PPNG) logic computes the required acceleration commands from PNG, but applies them in
continuous-thrust pulses. PPNG will “overshoot” the amount of correction specified by PNG, until the PNG
command is zero. At that point, the interceptor is instantaneously on a collision course, and the engines are turned
off. If there were no external accelerations or disturbances, the interceptor would continue on an interception
course. Because of the acceleration due to the sun, this will not be the case, and a further engine firing will be
required later as the interceptor ”drifts” further and further from the straight-line collision path.

Pulsed guidance can be employed using the so-called Schmitt trigger, or other pulse-modulation schemes.
Using a Schmitt trigger, acceleration commands are calculated by the PN guidance law as before. The trigger
commands the divert thrusters to turn on once the commanded acceleration exceeds a certain magnitude, chosen
by the designer, and off when the commanded acceleration reaches a designer-chosen cutoff. With traditional PN
guidance the LOS rate must reach zero for a successful intercept. Therefore the second cutoff is typically selected
as zero. The trigger control logic for pulsed proportional navigation guidance (PPNG) is shown in Figure 4.

4.2. Predictive Feedback Guidance Laws
A different class of guidance laws, which also uses on-off pulses, are the predictive guidance schemes. In this

paper, two versions of time-varying state transition matrix (STM) guidance are considered. Predictive guidance
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laws command a required velocity, vreq. Subtracting the current velocity v from this gives the velocity to be gained,
or ∆v. The simplest way to generate acceleration commands is to align the thrust vector with the ∆v vector. When
the desired velocity is achieved, ∆v is zero and the engine is cut off. The velocity to be gained is

∆v = vreq − v (21)

For a given acceleration magnitude a, the direction of the thrust acceleration should be aligned with the velocity-
to-be-gained vector, that is

a =
∆v
‖∆v‖

(22)

For asteroid intercept, with small changes in closing velocity, the relative position of the spacecraft at the end
of the mission can be estimated as

r
(
t f

)
� r̃t f = Φ1 (t) r (t) (23)

where

Φ1 = I +
1
2

G∆t2 =

1 +
3µ∆t2r2

1

2r5
0
−

µ∆t2

2r5
0

3µ∆t2r1r2

2r5
0

3µ∆t2r1r2

2r5
0

1 +
3µ∆t2r2

2

2r5
0
−

µ∆t2

2r3
0

 (24)

where r0 =

√
r2

1 + r2
2 and the subscript � is dropped for simplicity.

4.2.1. Predictive Impulsive Guidance
For practical implementation, we adopt the following definitions:

Vc (t) = ṙ (t)

Λ (t) =
r (t)
r (t)

Λc (t) =
r̃
(
t f

)
r̃
(
t f

)
tgo = ∆t (25)

Then, we have the predictive impulsive guidance law of the form

∆v = VcΛc − v (26)

4.2.2. Kinematic Impulsive Guidance
By making some additional kinematic simplifications, we can arrive at the kinematic impulsive law of the form

∆v = Vc

(
Λc − tgoΛ̇ − Λ

)
(27)

5. Leader-Follower Separation

The separation mechanism for the HAIV spacecraft is assumed to be like the mechanism for the Deep Impact
mission. In that mission, separation pyros fired allowing a spring to uncoil and separate the two spacecraft at a
speed of about 35 cm/s. In order to test the feasibility of employing such a separation mechanism, Monte Carlo
tests are run with uncertainties in the direction of the separation. First, a coordinate system is established via the
following equation:

Q̂ = Ŝ × Λ (28)

where Λ is the LOS direction, Ŝ is the unit sun vector, and Q̂ completes the orthogonal system. Figure 5 shows
the two angles that will be randomly drawn for Monte Carlo simulation. The angle α1 gives deviation from the
line-of-sight vector, while α2 rotates around the LOS vector to give three-dimensional displacement.

The components of the velocity change to be imparted by the separation are given by

VΛ = cos (α1) (29)
VW = sin (α1) cos (α2) (30)
VS = sin (α1) sin (α2) (31)
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Figure 5: Separation angle definitions.

The total velocity change direction becomes

∆̂v = VΛΛ + VWQ̂ + VS Ŝ (32)

The velocity change imparted to the fore and aft bodies is found as

v1 = −vsep
m1

m2 + m1
∆̂v (33)

v2 = vsep
m2

m2 + m1
∆̂v (34)

where vsep is the separation velocity from the separation mechanism. The new velocities of the fore and aft bodies
are finally expressed in the inertial coordinates as

vForeBody = vsc− + v2 (35)
vA f tBody = vsc− + v1 (36)

where vsc− is the velocity vector of the complete spacecraft before separation.

6. Imaging and Guidance Results

Two different types of missions, hypervelocity intercept and leader-follower separation, were simulated using
the GPU-based optical navigation simulator described in this paper. The target is a model of 433 Eros, scaled
down so that the longest dimension is 150 m. The target rotates with a period of 5 hours. The initial conditions
are perturbed such that the spacecraft will miss the target by approximately 15 km without control input. The
LOS rate, used for spacecraft acceleration commands, is found by numerically differentiating the LOS unit vector.
Images are obtained by the camera at a maximum rate of 1 Hz. In this study, the LOS rate is found with a simple
first-order finite differencing scheme. More refined algorithms and filters will be employed as the simulator is
further developed. The simulations start at I-2 hours, which for most targets is approximately the threshold time
for the sensors to detect any pixels.

6.1. Centroiding Algorithm

The simulated camera data rendering process described in Section 2 results in a simulated 1024 x 1024 pixel
camera image. From this image, the center of brightness is found according to Equation (11). The center of
brightness so found is based on the visible surface of the asteroid, with varying brightness according to surface
geometry and orientation with respect to the sun. For most asteroid missions, the asteroid’s shape and attitude
at impact time will not be well-known in advance, so the center of brightness must serve for targeting purposes.
However, this can vary greatly from the asteroid’s center of mass, which is the ideal target for hypervelocity
impact. Figure 6 shows an image of the Eros model during a simulation run. The magenta crosshair shows the
calculated center of brightness, while the known center of mass is shown by the blue circle.
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Figure 6: Known center of mass and calculated center of brightness.

6.2. Hypervelocity Intercept

Hypervelocity impact was simulated using both PN guidance and predictive guidance laws. To demonstrate
the challenges of hitting such a small target at hypervelocity, Figure 7 shows the simulated camera images at four
different times for a 150-m asteroid. The first is taken at I-30 minutes, when there are pixels illuminated, but not
enough to see in the total field of view. At I-5 minutes the entire shape of the asteroid can be seen, but the longest
axis is only on the order of 10 pixels. At I-2 seconds the target is easily seen, but still fits within the camera’s field
of view. A final image at I- 1

8 seconds shows the asteroid taking up almost the entire field of view, verifying that
impact in fact occurs.

The amount of information available to the sensors depends on the size of the asteroid. The HAIV is designed
to hit targets as small as 50 meters. Figure 8 shows a comparison of the camera image at I-2 seconds for a scaled-
down 50-m target and a scaled-up 450-m target. This figure underscores the small amount of sensor information
available for smaller targets.

Different target sizes also have an effect on the centroiding algorithm. The location of the centroid in pixel
coordinates can “jump” between frames for several reasons. One source of centroid jump is the growing size of
the asteroid in the camera frame. As the spacecraft approaches the target, the apparent size of the target increases,
with new pixels becoming visible on the edge of the figure. These pixels have an outsized effect on the centroid
location, being the farthest from the current centroid. Target rotation also causes centroid jump, as shadowing
effects and newly visible faces change the centroid location independent of camera resolution.

Hypervelocity impact missions using PN and pulsed PN guidance were simulated for a 150-m asteroid. Fig-
ures 9 and 10 show results for these simulations. The figures show the trajectories of the spacecraft and the target,
the evolution of the centroid location relative to the center of the image, the control history, total ∆v used, LOS
angle, and LOS angle rate. In these simulations, a simple filtering scheme was included to ignore one-time jumps
in the LOS rate, as these are more likely an artifact of the limited resolution of the camera than an actual physical
effect. As the optical navigation simulator continues to be developed, more refined filtering will be included.

Hypervelocity impact missions using the kinematic impulsive guidance law were simulated for both a 50-
m and a 450-m target asteroid. Figures 11 and 12 show results for these simulations. The figures show the
trajectories of the spacecraft and the target, the evolution of the centroid location relative to the center of the
image, the control history, total ∆v used, LOS angle, and LOS angle rate. From the figures, it can be seen that
centroid jump is more prominent for the 450-m target. Because the kinematic impulsive law generates guidance
commands with one instantaneous value of LOS rate, the controls commanded and resulting ∆v are similar for
both cases. The predictive impulsive law produces similar results, and detailed results are omitted for the interest
of saving space.

6.3. Leader-Follower Separation

The HAIV concept calls for two bodies, fore and aft, to separate shortly before impact and continue inde-
pendently before hitting the target asteroid. It is assumed that the spacecraft consists of a 1200-kg fore body

9



(a) I-30 minutes (b) I-5 minutes

(c) I-2 seconds (d) I- 1
8 seconds

Figure 7: Simulated camera images at different times-to-go in terminal guidance for a 150-m asteroid.
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(a) 50-m target asteroid (b) 450-m target asteroid

Figure 8: Comparison of images at I-2 seconds for 50- and 450-m target asteroids.

Figure 9: Simulation results for PN guidance of 150-m asteroid.
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Figure 10: Simulation results for Pulsed PN guidance of 150-m asteroid.
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Figure 11: Simulation results for Kinematic Impulsive guidance of 50-m asteroid.
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Figure 12: Simulation results for Kinematic Impulsive guidance of 450-m asteroid.

Figure 13: Histogram of α1 for 1000 Monte Carlo simulations.
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Figure 14: Histogram of α2 for 1000 Monte Carlo simulations.

Figure 15: Impact distribution for leader (blue-green) and follower (magenta).
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and a 500-kg aft body. At I-60 seconds, the two bodies separate with a relative separation velocity of 35 cm/s.
Once separation occurs, no further control accelerations are applied. In this simulation, 1000 Monte Carlo shots
were run for a 150-m asteroid. The actual separation conditions were found in accordance with Section 5. The
off-LOS angle, α1, was selected from a half normal distribution, while the rotation angle, α2, was selected from
an even distribution from −π to π. Figures 13 and 14 show histograms of the angles chosen for the Monte Carlo
simulations.

With a separation instantaneously imparted, the fore and aft bodies continue until impacting (or missing) the
asteroid. Figure 15 shows a scatter plot of leader hits in light blue and follower hits in magenta. For the extreme
conditions tested, the follower misses the asteroid entirely in some cases.

7. Conclusions

In this paper, a new GPU-based optical navigation and terminal guidance simulation was described. A GPU-
based simulator was used to simulate terminal phase hypervelocity intercept for an asteroid interceptor. The new
GPU-based simulation tool provides realistic camera data for an optical navigation mission, given a model of a
target asteroid. It is seen that various guidance laws can be used to achieve hypervelocity impact. Second, a
late separation mechanism from the proposed HAIV mission was simulated to examine the feasibility of a two-
body spacecraft performing a “double-hit” at a small target asteroid. Further development of this simulation tool
will allow design and testing of navigation filters for optical navigation information, as well as higher-fidelity
simulation of leader-follower separation.
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