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Abstract 

 
Given a limited warning time, an asteroid impact mitigation campaign would hinge on uncertainty-based 
information consisting of remote observational data of the identified Earth-threatening object, general knowledge 
on near-Earth asteroids (NEAs), and engineering judgment. Due to these ambiguities, the campaign credibility 
could be profoundly compromised. It is therefore imperative to comprehensively evaluate the inherent uncertainty 
in deflection and plan the campaign accordingly to ensure successful mitigation. This research demonstrates 
dual-deflection mitigation campaigns consisting of primary and secondary deflection missions, where both 
deflection performance and campaign credibility are taken into consideration. The results of the dual-deflection 
campaigns show that there are trade-offs between the competing aspects: the total interceptor mass, interception 
time, deflection distance, and the confidence in deflection. The design approach is found to be useful for 
multi-deflection campaign planning, allowing us to select the best possible combination of deflection missions 
from a catalogue of various mitigation campaign options, without compromising the campaign credibility. 
 
Keywords: near-Earth asteroid, deflection technique, short warning time, dual-deflection campaign, 
uncertainty-based information, multi-objective optimization 
 
1. Introduction 
 

As of today, several asteroid deflection concepts have been proposed and they are under preliminary 
investigation. Some of these concepts appear to be feasible with the current technology developed through deep 
space exploration missions, whereas others require certain levels of technological advancement before they can be 
considered as feasible deflection alternatives. Also, a deflection technique which makes use of nuclear devices for 
example, involves political issues to be tackled in global cooperation. Nevertheless, we now recognise that it is not 
unrealistic to prevent an impact event by a modest-sized (<150 metres in diameter) near-Earth asteroid (NEA) if it 
can be discovered and identified to be threatening about a decade in advance of the impact event [1]. Most 
importantly, even such small asteroids can cause a local devastation far greater than the Tunguska event in 1908 or 
the Chelyabinsk meteor event on the 15th of February in 2013. Fortunately, statistically speaking, or based on the 
NEA population that has been discovered so far, it is more likely that hazardous NEAs to be mitigated will be in 
this modest size range, rather than kilometre-sized NEAs which can potentially trigger a global catastrophe such 
as the K-T boundary impact event [2]. This research will therefore focus on hazard mitigation of the modest-sized 
NEAs with warning times of <10 years. 

The most notable feature of asteroid deflection mission is that the characteristics (orbital parameters, physical 
properties, dynamical properties, etc.) of the NEA are deeply embedded into the design as an integral part of the 
mitigation systems, and influence their deflection performance. Figure 1 is a schematic diagram that describes 
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Design of a dual-deflection mitigation campaign involves trade-offs between the competing aspects (the total 
interceptor mass, interception time, deflection distance, and the confidence in deflection) which are to be 
optimised in order to minimise the launch cost of hazardous NEA mitigation systems and total campaign period 
while maximising the deflection performance and the confidence in successful mitigation campaign. 

This paper is articulated as follows. In Section 2, the fundamental aspects of preliminary NEA characterisation 
subject to warning times and associated epistemic uncertainties, and inevitable measurement errors are briefly 
highlighted. Section 3 gives an overview on hazardous NEA deflection missions and associated uncertainty in the 
performance of a given deflection mission due to the incomplete information on the characteristics of the target 
NEA. Section 4 details the planning of a combined hazardous NEA mitigation campaign consisting of two 
different deflection missions, followed by optimisation of the initial results. Finally, we present the results of the 
dual-deflection campaigns consisting of a KI backed up by a GT in Section 5. 
 
2. Preliminary characterisation of hazardous NEA 
 

Preliminary characterisation of an identified hazardous NEA is essential during the early stages of mitigation 
campaign planning to appropriately design mitigation systems based on the available information regarding the 
fundamental characteristics (e.g. physical, dynamical, orbital properties, etc.) of the target NEA. Sending a 
precursor mission to the NEA is obviously preferable in terms of measurement accuracy as well as to avoid 
possible mischaracterisation in size, mass, etc.; however, in reality, available characterisation options will be 
dependent on the given warning time and the NEA orbit. 

In the following subsections, three different characterisation approaches – ground-based, space-based, and 
proximity characterisation – are presented and their degrees of measurement accuracy are briefly summarised. 
The ground-based characterisation approach is explained more in detail here along with its characterisation 
diagram as this is the most likely characterisation scenario. Two types of uncertainties – epistemic uncertainties 
and measurement errors – associated with the preliminary NEA characterisation are then introduced. In addition, 
aleatory uncertainties are presented for reference, since these are related to the practical limitations (i.e. errors) on 
mitigation systems (e.g. lack of precision). 
 
2.1. Characterisation scenarios 
 

Depending on the available warning time, preliminary characterisation of a hazardous NEA will vary since each 
characterisation approach will have a different degree of uncertainty. There are basically three different 
preliminary characterisation approaches: ground-based, space-based, and proximity characterisation. 

The ground-based characterisation makes use of telescopic and radar observations from the Earth whereas the 
space-based characterisation leverages infrared astronomical satellites (IRAS) in space in addition to the 
ground-based observation options. These two characterisation scenarios would require only a few days during 
close Earth approaches of NEAs to complete the preliminary characterisation [7], which means they could be 
possibly used simultaneously with the first discovery of a hazardous NEA by radar or telescope. On the other hand, 
the proximity characterisation approach, which requires a precursor mission to the target NEA, would take <1¼ 
years to complete the preliminary characterisation [8]. The availability of precursor mission is subject to the orbit 
of an identified threatening NEA while, particularly for the short warning-time cases, quick preliminary 
characterisation is essential to ensure a wider mitigation campaign window (i.e. the period between the Earth 
departure of mitigation systems and the completion of NEA interception). The wider campaign window results in 
more mitigation campaign options and more efficient mitigation, even though the preliminary characterisation 
may remain incomplete without a precursor mission. 

The accuracy of observational information by the ground-based characterisation is based on the capability of 
ground-based telescopes and radar instruments on Earth, and thus the majority of physical parameters of the target 
object will remain highly uncertain [9]. Microscopic properties of a NEA can be estimated by analysing the 
surface colour and solar spectral reflectance while macroscopic characteristics such as the mass and the porosity 
are much more difficult to be ascertained particularly when the object is only a few hundred metres or so in 
diameter. According to Müller et al. [10], the ground-based telescopic observations with the state-of-art 
mid-infrared module (TIMM-2) have demonstrated higher performance at NEA characterisation than the radar 
telescopic observations (e.g. Arecibo and Goldstone) as the asteroid sub-surface/internal structures can be roughly 
estimated through thermal characterisation of the asteroidal surface. However, in this study, such advanced 
ground-based mid-infrared observations are not considered to distinguish the ground-based characterisation from 
the space-based characterisation which makes use of infrared observation. 

Figure 2 is the simplified diagram of the ground-based characterisation approach. The fundamental physical 
characteristics (mass, size, albedo, and momentum enhancement) for mitigation system design are derived from 
the ground-based observational data, meteorite analogues of the NEA, and expert opinions regarding the macro 
porosity (i.e. large structural flaws inside the NEA). Crucially, the mass determination of the NEA cannot be done 
directly through the ground-based observations since it requires additional information from meteorite analogues 
regarding the microscopic characteristics of the main material that composes the asteroid and expert opinions 
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uncertainties in the solar flux, the asteroid surface condition, the mirror degradation with time. This type of 
uncertainties cannot be completely eliminated but they can be mathematically modelled using a conventional 
probability theory, once a sufficient amount of statistical data is available. However, such aleatory uncertainties in 
deflection techniques are not considered in this work. 

Epistemic uncertainties will be the most common cause of the uncertain physical properties of the target body, 
followed by measurement errors unless our general knowledge on NEAs is abundant and non-biased. Table 1 
summarises the uncertainties in NEA mass ܯ௔ and geometric albedo ݌௩ corresponding to the three different 
characterisation options and three different taxonomic classes: S-type, C-type, and M-type, where the NEA mass 
 ୫୧ୡ୰୭, bulk porosity ୠܲ୳୪୩, and the equivalent diameterߩ ௔ can be determined by referring to the micro densityܯ
݀ of the NEA, according to Equation (1). 
 
௔ܯ  ൌ ୫୧ୡ୰୭ሺ1ߩ െ ୠܲ୳୪୩ሻ ൈ ሺ݀ߨ4 2⁄ ሻଷ 3⁄  (1)  
 
These uncertainties originate from the lower and upper bounds of the uncertain NEA physical properties given in 
Table 10 in Appendix A.1. As can be seen, more rigorous but possibly more time-consuming characterisation 
results in smaller ranges of uncertainties in the physical properties for all the taxonomic classes. Interested readers 
should refer to Appendices A.1 for further details on the uncertain NEA physical properties. 
 
Table 1 Uncertainties in the mass ܯ௔ and the geometric albedo ݌௩ of the NEA corresponding to the 
ground-based, space-based, and the proximity characterisation scenarios. They are represented in percentage 
relative to the mean physical properties of each taxonomic class. A) S-type. B) C-type. C) M-type. 
 

A) Ground-based Space-based Proximity 
 ௔ -36.1–45.7% -28.8–36.8% -5.4–9.0%ܯ
 ௩ -46.4–50.0% -23.8–31.7% -10.0–10.0%݌

 

B) Ground-based Space-based Proximity 
 ௔ -41.3–45.6% -32.3–35.5% -4.0–4.7%ܯ
 ௩ -26.5–34.1% -23.8–31.7% -10.0–10.0%݌

 

C) Ground-based Space-based Proximity 
 ௔ -27.3–24.5% -21.5–20.8% -3.0–2.0%ܯ
 ௩ -28.6–42.9% -23.8–31.7% -10.0–10.0%݌

 
3. Hazardous NEA deflection 
 

The deflection representation of hazardous NEAs in this work is based on the b-plane concept that is applied to 
planetary encounter analyses [4]. The b-plane is oriented normal to the incoming asymptote of the osculating 
geocentric hyperbola, in other words, it is oriented normal to the object’s unperturbed geocentric velocity vector 
 NEA|୬୭୫୧୬ୟ୪ as shown in Figure 3-A). The b-plane analysis can not only determine whether an Earth collision is܃
possible, but also determine how close to Earth the encounter will be. Furthermore, understanding the position of 
an Earth encountering object on the b-plane (i.e. the uncertainty ellipsoid projected on the b-plane) is prerequisite 
to the keyhole analysis. The minimum distance of the unperturbed trajectory at the closest approach point on the 
b-plane is called the impact parameter b denoted by a red line segment in Figure 3-B). The impact parameter itself 
does not reveal whether the perturbed trajectory will intersect the Earth sphere; however, it can be available by 
scaling Earth’s radius rْ according to Equation (2) 
 
 ْܾ ൌ rْඥ1 ൅ vୣ

ଶ vஶ
ଶ⁄  (2)  

 
where vୣ is Earth’s escape velocity and vஶ is the hyperbolic excess velocity given as follows. 
 
 vୣ

ଶ ൌ 2GMْ rْ⁄  (3)  
 
 vஶ

ଶ ൌ µٖ ቀ3 െ 1 ܽ⁄ െ 2ඥܽሺ1 െ ݁ଶሻcos݅ቁ (4)  
 
A given trajectory intersects the Earth sphere if ܾ is smaller than the scaled Earth-radius ْܾ, and not otherwise. 
On the b-plane the ߦ coordinate is the minimum distance that can be obtained by varying the timing of the 
encounter. This distance, known as the minimum orbital intersection distance (MOID), is equivalent to the 
minimum separation between the osculating ellipses, regardless of the location of the objects on their orbits. 
Throughout this work, the MOID between Earth and a NEA is set to zero and the Earth is located right at the origin 
of the geocentric coordinate system ሺߦ, ,ߟ  .(ሻ on the b-plane as shown in Figure 3-Aߞ
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Table 6 shows an example of BPA structures for the NEA mass ܯ௔, momentum enhancement factor ߚ, 
deflection ܾ on the 2036 b-plane, and impulsive velocity change ∆ݒ given by KI. In this case, the nominal 
deflection ܾ୬୭୫ is set to 2.5 Earth-radii and the target NEA is VI1 of S-type characterised at the ground-based 
level. ܯ௔ can be calculated simply by Equation (1) whereas ߚ is obtained by a solution of Equation (15) 
originating from the work by Holsapple et al. [22]. 
 
ߚ   ൌ 1 ൅ ሺ0.083ሻܷ଴.ଶܻି଴.ଵߩୠ୳୪୩

ି଴.ଵߜ଴.ଶ  (15)  
 
where ܷ is impactor velocity, ܻ is the material strength of the target asteroid, and ߜ is the impactor density. The 
material strength of S-type is assumed to be 10 kPa and the impactor density is set to 3.0 g/cm3. The bulk density 
is given by ߩୠ୳୪୩ ൌ ୫୧ୡ୰୭ሺ1ߩ െ ୠܲ୳୪୩ሻ. The impactor velocity for the case of KI is one of the design variables, 
hence is simply subject to the mitigation system design. 
 
Table 5 Nominal physical properties of three asteroid classes; micro density ߩ୫୧ୡ୰୭, micro porosity ୫ܲ୧ୡ୰୭, bulk 
density ߩୠ୳୪୩, bulk porosity ୠܲ୳୪୩, geometric albedo ݌௩, and NEA mass ܯ௔. A) Ground-based characterisation 
scenario. B) Space-based characterisation scenario. C) Proximity characterisation scenario. The mitigation system 
is designed based on the nominal physical properties instead of considering a system margin approach or the worst 
NEA characteristics. 
 

A) ߩ୫୧ୡ୰୭ (g/cm3) ୫ܲ୧ୡ୰୭ (%) ߩୠ୳୪୩ (g/cm3) ୠܲ୳୪୩ (%) ݌௩  ௔ (kg)ܯ 
S-type 3.45 10.66 2.20 36.17 0.19 3.17 ൈ 10ଽ 
C-type 2.71 23.00 2.21 47.36 0.05 2.05 ൈ 10ଽ 
M-type 7.87 0.60 2.27 17.55 0.12 9.32 ൈ 10ଽ 

 

B) ߩ୫୧ୡ୰୭ (g/cm3) ୫ܲ୧ୡ୰୭ (%) ߩୠ୳୪୩ (g/cm3) ୠܲ୳୪୩ (%) ݌௩  ௔ (kg)ܯ 
S-type 3.45 10.66 1.42 36.12 0.18 3.17 ൈ 10ଽ 
C-type 2.71 23.00 1.43 47.34 0.05 2.05 ൈ 10ଽ 
M-type 7.87 0.60 1.47 17.45 0.12 9.33 ൈ 10ଽ 

 

C) ߩ୫୧ୡ୰୭ (g/cm3) ୫ܲ୧ୡ୰୭ (%) ߩୠ୳୪୩ (g/cm3) ୠܲ୳୪୩ (%) ݌௩  ௔ (kg)ܯ 
S-type 3.45 10.89 6.49 34.35 0.19 3.26 ൈ 10ଽ 
C-type 2.70 23.00 6.49 45.71 0.05 2.11 ൈ 10ଽ 
M-type 7.88 0.60 6.85 13.14 0.12 9.84 ൈ 10ଽ 

 
Table 6 Example of BPA structures for NEA mass ܯ௔, momentum enhancement factor ߚ, deflection ܾ on the 
2036 b-plane, and the impulsive velocity change ∆ݒ by KI with impact velocity of 16.4 km/s. ܾ୬୭୫ is set to 2.5 
Earth-radii and the target NEA is VI1 of S-type characterised at the ground-based level. 
 

 ௜ሻܥሺcm/sሻ ݉௖ሺ ݒ∆ (Earth-radius) ܾ ߚ ௔ (kg)ܯ  
 

 Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

 

ଵ 2.02 ൈܥ 10ଽ 2.37 ൈ 10ଽ 1.55 1.54 3.33 3.93 2.33 2.75 0.04 
ଶ 2.07 ൈܥ 10ଽ 2.51 ൈ 10ଽ 1.55 1.54 3.14 3.84 2.20 2.69 0.04 
ଷ 2.19 ൈܥ 10ଽ 2.66 ൈ 10ଽ 1.55 1.54 2.96 3.62 2.07 2.53 0.05 
ସ 2.32 ൈܥ 10ଽ 2.76 ൈ 10ଽ 1.55 1.54 2.85 3.41 1.99 2.39 0.01 
ହ 2.32 ൈܥ 10ଽ 2.85 ൈ 10ଽ 1.55 1.53 2.76 3.41 1.93 2.39 0.09 
଺ 2.37 ൈܥ 10ଽ 3.02 ൈ 10ଽ 1.54 1.53 2.60 3.33 1.82 2.33 0.08 
଻ 2.51 ൈܥ 10ଽ 3.19 ൈ 10ଽ 1.54 1.53 2.45 3.14 1.72 2.20 0.09 
ൈ 2.66 ଼ܥ 10ଽ 3.31 ൈ 10ଽ 1.54 1.53 2.36 2.96 1.65 2.07 0.02 
ଽ 2.78 ൈܥ 10ଽ 3.32 ൈ 10ଽ 1.54 1.53 2.35 2.82 1.65 1.98 0.04 
ଵ଴ 2.85 ൈܥ 10ଽ 3.52 ൈ 10ଽ 1.53 1.52 2.21 2.76 1.55 1.93 0.04 
ଵଵ 3.02 ൈܥ 10ଽ 3.72 ൈ 10ଽ 1.53 1.52 2.09 2.60 1.46 1.82 0.05 
ଵଶ 3.19 ൈܥ 10ଽ 3.86 ൈ 10ଽ 1.53 1.52 2.01 2.45 1.41 1.72 0.01 
ଵଷ 3.25 ൈܥ 10ଽ 3.96 ൈ 10ଽ 1.53 1.52 1.96 2.41 1.37 1.68 0.13 
ଵସ 3.32 ൈܥ 10ଽ 4.20 ൈ 10ଽ 1.53 1.51 1.84 2.35 1.29 1.65 0.12 
ଵହ 3.52 ൈܥ 10ଽ 4.44 ൈ 10ଽ 1.52 1.51 1.74 2.21 1.22 1.55 0.14 
ଵ଺ 3.72 ൈܥ 10ଽ 4.61 ൈ 10ଽ 1.52 1.51 1.68 2.09 1.17 1.46 0.03 

 
  



The results for the uncertainties in the outcomes (i.e. deflection distance ܾ) of respective deflection techniques 
represented by the Belief and Plausibility measures are shown in Figure 7, Figure 8, and surmarised in Table 7. 
Firstly, it can be seen that Belief and Plausibility measures inform lower and upper bounds of the outcomes of 
deflection missions. Such straightfoward information is available through a conventional system margin approach 
which only considers a series of possible ranges of system design parameters (e.g. ܯ௔ and ߚ) without assigning 
probabilities (i.e. outcomes of interception are always given as a plain interval value without carrying any 
information about epistemic uncertainties within the interval.). On the other hand, these probability measures 
associated with Evidence Theory indicate confidence in every possible outcome of deflection missions, which is 
directly related to the source of uncertainty and current uncertainty level. To this extent, Evidence Theory allows a 
more rigorous quantification of uncertainties than the aforementioned system margin approach does. 

The results indicate that no matter how much literature or how many expert opinions one refers to for mitigation 
system design, as long as there are epistemic uncertainties and measurement errors in observational data, the 
uncertainty in deflection will be present. In other words, for whatever deflection b with ݈݁ܤሺܾሻ ൏ 1.0, the 
confidence in achieving that deflection distance is to a greater or lesser extent, compromised. 

Depending on the physical properties that are related to each deflection technique and also the taxonomic class 
of the asteroid, Belief/Plausibility of the deflection varies. Due to the substantial amount of uncertainty in albedo 
shown in Table 1, the performance of the SC is fairly compromsied as seen in Figure 8-C) whereas Figure 7-A) 
and Figure 7-B) indicate that the KI and the NI are subject to more or less the same amount of uncertainty. This 
can be interpred as both KI and NI are instantaneous deflection techniques that are equally dependent on the 
uncertainties in the mass and the momentum multiplication of the NEA but independent of the albedo value. 

Figure 8-D) shows a series of results for the GT, where the amount of uncertainty in deflection is clearly 
smallest among the four deflection techniques in any characterisation scenarios as well as for any types of asteroid. 
These results indicate that the performance of GT is least dependent on the epistemic uncertainties in NEA 
physical characteristics, particularly on the uncertainty in mass. The remarkable aspect of the GT technique is that 
the performance of GT is a function of the NEA mass because the technique simply makes use of the gravitational 
pull between the asteroid and the GT spacecraft; the heavier/lighter the asteorid mass is, the larger/smaller the 
gravitational pull will be. This is remarkable considering the fact that the GT is the least efficient deflection 
technique among the ones being evaluated, in terms of both yield-to-weight and interception period. To this extent, 
a GT would be suitable for a secondary interceptor that backs up a more unpredictable but efficient instantaneous 
deflection attept. 

In summary, unless the preliminary characterisation is conducted at the proximity characterisation level, the 
outcome of a NEA deflection mission will always lack precision, whatever the design parameters (e.g. nominal 
NEA characteristics) and the design variables (e.g. interceptor mass, impact velocity, mirror size, etc.) are selected, 
hence the deflection performance will be compromised. Considering a system margin (i.e. increasing the 
deflection performance of a single mitigation system) in order to ensure ݈݁ܤሺܾୱୟ୤ୣሻ ൌ 1.0 is valid here, however 
the aim of this work is not to design a single mitigation system that is capable of providing a desired deflection at 
its worst possible performance but to develop a mitigation campaign consisting of multi-deflection mission that 
retains a certain level of confidence in achieving a desired deflection even if the primary deflection mission is 
unsuccesful. 
 
Table 7 Lower and upper bounds of the deflection ܾ (Earth-radius) on the 2036 b-plane for different deflection 
techniques, characterisation scenarios, and taxonomic classes. A) KI. B) NI. C) SC. D) GT. 
 

A) S-type C-type M-type 
Ground-based 1.70–3.97 1.70–4.38 2.05–3.33 
Space-based 1.81–3.55 1.83–3.75 2.11–3.11 
Proximity 2.29–2.66 2.38–2.61 2.45–2.57 
 

B) S-type C-type M-type 
Ground-based 1.71–3.93 1.71–4.32 2.01–3.33 
Space-based 1.82–3.52 1.84–3.71 2.11–3.12 
Proximity 2.29–2.65 2.34–2.62 2.46–2.57 
 

C) S-type C-type M-type 
Ground-based 1.11–5.23 1.60–4.60 1.46–4.54 
Space-based 1.34–4.23 1.74–3.90 1.61–3.99 
Proximity 2.15–2.85 2.35–2.63 2.35–2.74 
 

D) S-type C-type M-type 
Ground-based 2.32–2.81 2.38–2.85 2.25–2.86 
Space-based 2.35–2.79 2.41–2.80 2.29–2.77 
Proximity 2.48–2.56 2.49–2.54 2.48–2.54 
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Figure 7 Belief and Plausibility of deflection on the 2036 b-plane for different characterisation scenarios and 
asteroid classes. Black lines represent Belief measures whereas dashed black lines represent Plausibility 
measures. Green lines represent the nominal deflection distance ܾ୬୭୫. A) KI. B) NI. 
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Figure 8 Belief and Plausibility of deflection on the 2036 b-plane for different characterisation scenarios and 
asteroid classes. Black lines represent Belief measures whereas dashed black lines represent Plausibility measures. 
Green lines represent the nominal deflection distance ܾ୬୭୫. C) SC. D) GT. 
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The minimum and maximum values of design variables ܠ for a KI-GT campaign are given in Table 8. 
݉ଵ and ݉ଶ are the masses of primary and secondary mitigation systems at the NEA arrival, respectively. 
݋ݐ ଵ andݐ ଵ݂ are the Earth departure time and the flight time of the primary interceptor whereas ݐଶ and ݋ݐ ଶ݂ are 
the Earth departure time and the flight time of the secondary interceptor. ݒ୧୫୮ is the relative velocity component 
of the KI parallel to the flight direction of the NEA. ݐ୮୳ୱ୦ is the tractoring period of the GT. 
 

Table 8 Minimum and maximum values of design variables ܠ for a KI-GT campaign. 
 ݉ଵ ሺkgሻ ݉ଶ ሺkgሻ ݐଵ ݋ݐ ଵ݂ ሺdayሻ ݐଶ ݋ݐ ଶ݂ ሺdayሻ ݒ୧୫୮ ሺkm/sሻ ݐ୮୳ୱ୦ ሺdayሻ
min 500 500 2026/4/13 100 2026/4/13 100 0 0 
max 10000 20000 2033/7/11 1000 2033/7/11 1000 30 3650 

 
4.2. Campaign optimisation 
 

In order to design a dual-deflection campaign, a number of trade-offs between competing aspects must be 
evaluated and optimised in order to minimise the launch cost and total campaign period while maximising the 
deflection performance and confidence level on mitigation campaign. The campaign optimisation problem 
requires evaluating the figures of merit (i.e. mitigation performance indicators ܡ) that characterise the 
performance and the confidence in successful mitigation campaign. The mitigation performance indicators ܡ is 
given as 
 
ܡ  ൌ ൣ݉଴, ,௙ଵݐ ,௙ଶݐ െܾ୬୭୫, െ݈݁ܤ୬୭୫൧ (16)  
 
where five figures of merit that characterise the optimality of mitigation campaign are: 
 

 ݉଴ is the total mass of two hazardous NEA mitigation systems at the Earth departure stage (EDS), which 
should be as small as possible to reduce the cost of the mitigation campaign. 

 ௙ଵ is the completion time of the primary deflection mission, which is desirable to be as early as possible suchݐ 
that a longer interception by the secondary deflection mission after the primary interception can be available. In 
addition, earlier completion of the primary interception is simply preferable for safety reasons. 

 ௙ଶ is the completion time of secondary deflection mission (i.e. campaign completion time), which should alsoݐ 
be as early as possible such that an additional mitigation campaign can be launched, if necessary. 

 ܾ୬୭୫ is the nominal deflection on the b-plane, which is desired to be as large as possible within the range of 
ْܾ ൏ ܾ୬୭୫ ൏ ܾୱୟ୤ୣ. 

 ୬୭୫ is Belief of nominal deflection, and thus higher Belief indicates higher confidence in successful݈݁ܤ 
mitigation. 

 
The constraints on ܡ are given as 
 
 ൣ݉଴ ൑ ௙ଵݐ   ,200 ൑ ௙ଶݐ ൑ ,MOIDݐ ْܾ ൑ ܾ୬୭୫ ൑ ܾୱୟ୤ୣ, ܾ୲୰୧୫ ൒ 1000൧ (17)  
 
where ݉଴ is limited to 200 tons and ݐ௙ଵ can be no later than ݐ௙ଶ in order to allow the secondary interceptor to 
conduct a necessary trim manoeuvre for keyhole avoidance after the primary interception. The nominal deflection 
ܾ୬୭୫ must be at least ْܾ and can be as large as ܾୱୟ୤ୣ. The deflection distance ܾ୲୰୧୫ that can be provided by the 
trim manoeuvre of the secondary deflection mission by GT after the primary interception must be greater than 
1000 km. This seems to be more than enough to avoid undesired keyhole passage due to the primary deflection 
mission according to the JPL report [5]. 

In this work, the fast and elitist multiobjective genetic algorithm NSGA-II proposed in the work of Deb et al. 
[25] is used to compute Pareto optimal design points of dual-deflection mitigation campaigns. A total of 2400 
solutions for the mitigation performance indicators ܡ are numerically computed in MATLAB. 
 
5. Results and discussion 
 

The results of KI-GT campaigns against VI1 of S-type asteroid characterised at the ground-based level are 
presented in Figure 10. The Pareto-optimal solutions for the campaigns are presented in terms of the campaign 
completion time (i.e. the completion time ݐ௙ଶ of the GT) and the total interceptor mass ݉଴ at the EDS, which are 
categorised into eight different levels of the Belief measure of nominal deflection; ݈݁ܤ୬୭୫. 

One of the notable aspects of dual-deflection campaigns is that ݈݁ܤ୬୭୫ is highly dependent on both total 
interceptor mass ݉଴ at the EDS and the campaign completion time ݐ௙ଶ. For the KI-GT campaign scenario, there 
are quite a few optimal KI-GT campaigns available within 100–150 tons of ݉଴, given ݈݁ܤ୬୭୫ ൑ 0.57 and 2–4 



years of ݐ௙ଶ, whereas there are almost no KI-GT campaigns available within 100–150 tons of ݉଴, given 
୬୭୫݈݁ܤ ൒ 0.83 and <4 years of ݐ௙ଶ. 

Also, it can be seen that a longer campaign period (>6 years) does not necessarily increases the overall 
mitigation performance including ݈݁ܤ୬୭୫ but actually there are many optimal dual-deflection campaigns with a 
nominal deflection as large as 2.5 Earth-radii within 3–6 years of ݐ௙ଶ for ݈݁ܤ୬୭୫ ൒ 0.70 without requiring a 
significantly large amount of total interceptor mass relative to that for longer-term campaigns. This appears to be 
simply due to the fact that later asteroid deflection missions are less efficient than earlier ones. 

Table 9 shows a series of design variables ܠ and mitigation performance indicators ܡ for some examples of 
optimal KI-GT mitigation campaigns with different degrees of confidence in nominal deflection. Particularly for 
the KI-GT campaign scenario against VI1, the GT rendezvous with the NEA approximately <2 years before or <1 
year after the KI arrival/interception time depending on the respective KI-GT campaign sequences, where the 
former case is found to be highly beneficial in terms of the proximity characterisation of the NEA as well as of the 
precise guidance of the KI by GT. The GT might start tractoring immediately after the NEA rendezvous without 
waiting for the KI arrival/impact, however most importantly, this is not always the case particularly when the true 
values of the NEA physical properties are in the nominal conditions or much more favourable conditions (e.g. less 
heavy NEA mass than expected, smaller in size, etc.). If the in-situ NEA physical characteristics result in a 
favourable outcome, the GT will simply add an extra deflection to the outcome of the primary interception. It can 
also be seen that the avoidance of undesired keyhole passage due to the primary interception is fulfilled, counting 
on the reserved deflection ܾ୲୰୧୫ by the GT trim manoeuvre after the primary interception. The period of time to 
achieve ܾ୲୰୧୫ ranges from 107 days to 9.35 years. 

Furthermore, the preliminary results of the KI-GT campaign scenario imply that not only the NEA arrival but 
the Earth departure of the KI could be even later than the GT arrival at the NEA, depending on the availability that 
is subject to the launch window, warning time, NEA orbit, etc. This would be beneficial for the mitigation system 
design of KI as a primary interceptor because the GT can conduct preliminary characterisation of the NEA at the 
proximity level in advance of the Earth departure of the KI, and thus investigating the availability of such a 
precursor characterisation mission by GT should be subject of future work. 
 
Table 9 Design variables ܠ and mitigaiton performance indicators ܡ for some examples of optimal KI-GT 
mitigation campaigns with different degrees of ݈݁ܤ୬୭୫. A) ݈݁ܤ୬୭୫ ൒ 0.47. B) ݈݁ܤ୬୭୫ ൒ 0.56.  
C) ݈݁ܤ୬୭୫ ൒ 0.70. D) ݈݁ܤ୬୭୫ ൒ 0.83. E) ݈݁ܤ୬୭୫ ൒ 0.97. F) ݈݁ܤ୬୭୫ ൌ 1.00. 
 

A) ݉ଵ ሺkgሻ ݉ଶ ሺkgሻ ݐଵ ݋ݐ ଵ݂ ሺdayሻ ݋ݐ ଶݐ ଶ݂ ሺdayሻ ୮୳ୱ୦ݐ ୧୫୮ ሺkm/sሻݒ ሺdayሻ
 2660 2734 2026/4/14 296 2026/5/12 536 12.5 746 
 ݉଴ ሺtonሻ ݐ௙ଵ ݐ௙ଶ ܾ୬୭୫ (Earth-radius) ܾ୲୰୧୫ (km) ݈݁ܤ୬୭୫ ݈ܲ୬୭୫

 72 2027/2/4 2029/11/14 2.26 1083 0.47 0.83 
 

B) ݉ଵ ሺkgሻ ݉ଶ ሺkgሻ ݐଵ ݋ݐ ଵ݂ ሺdayሻ ݋ݐ ଶݐ ଶ݂ ሺdayሻ ୮୳ୱ୦ݐ ୧୫୮ ሺkm/sሻݒ ሺdayሻ
 2440 5813 2027/1/2 536 2026/5/14 558 16.3 801 
 ݉଴ ሺtonሻ ݐ௙ଵ ݐ௙ଶ ܾ୬୭୫ (Earth-radius) ܾ୲୰୧୫ (km) ݈݁ܤ୬୭୫ ݈ܲ୬୭୫

 99 2028/6/21 2030/1/31 2.36 1275 0.56 1.00 
 

C) ݉ଵ ሺkgሻ ݉ଶ ሺkgሻ ݐଵ ݋ݐ ଵ݂ ሺdayሻ ݋ݐ ଶݐ ଶ݂ ሺdayሻ ୮୳ୱ୦ݐ ୧୫୮ ሺkm/sሻݒ ሺdayሻ
 7147 6948 2028/7/6 312 2026/5/7 563 5.56 1102 
 ݉଴ ሺtonሻ ݐ௙ଵ ݐ௙ଶ ܾ୬୭୫ (Earth-radius) ܾ୲୰୧୫ (km) ݈݁ܤ୬୭୫ ݈ܲ୬୭୫

 112 2029/5/14 2030/11/27 2.34 1085 0.70 1.00 
 

D) ݉ଵ ሺkgሻ ݉ଶ ሺkgሻ ݐଵ ݋ݐ ଵ݂ ሺdayሻ ݋ݐ ଶݐ ଶ݂ ሺdayሻ ୮୳ୱ୦ݐ ୧୫୮ ሺkm/sሻݒ ሺdayሻ
 7150 6948 2028/7/6 312 2026/5/11 563 5.00 1102 
 ݉଴ ሺtonሻ ݐ௙ଵ ݐ௙ଶ ܾ୬୭୫ (Earth-radius) ܾ୲୰୧୫ (km) ݈݁ܤ୬୭୫ ݈ܲ୬୭୫

 113 2029/5/14 2030/12/1 2.08 1097 0.83 1.00 
 

E) ݉ଵ ሺkgሻ ݉ଶ ሺkgሻ ݐଵ ݋ݐ ଵ݂ ሺdayሻ ݋ݐ ଶݐ ଶ݂ ሺdayሻ ୮୳ୱ୦ݐ ୧୫୮ ሺkm/sሻݒ ሺdayሻ
 6593 8745 2028/6/4 356 2026/5/6 551 6.05 1330 
 ݉଴ ሺtonሻ ݐ௙ଵ ݐ௙ଶ ܾ୬୭୫ (Earth-radius) ܾ୲୰୧୫ (km) ݈݁ܤ୬୭୫ ݈ܲ୬୭୫

 143 2029/5/26 2031/6/30 2.47 1708 0.97 1.00 
 

F) ݉ଵ ሺkgሻ ݉ଶ ሺkgሻ ݐଵ ݋ݐ ଵ݂ ሺdayሻ ݋ݐ ଶݐ ଶ݂ ሺdayሻ ୮୳ୱ୦ݐ ୧୫୮ ሺkm/sሻݒ ሺdayሻ
 7302 10736 2028/6/21 322 2026/5/10 556 5.71 1009 
 ݉଴ ሺtonሻ ݐ௙ଵ ݐ௙ଶ ܾ୬୭୫ (Earth-radius) ܾ୲୰୧୫ (km) ݈݁ܤ୬୭୫ ݈ܲ୬୭୫

 166 2029/5/9 2030/8/22 2.42 1417 1.00 1.00
 
  



A) B) 

C) D) 

E) F) 

G) H) 

  

Figure 10 Optimal solutions for KI-GT campaigns. Deeper blue dots represent higher values of ܾ୬୭୫ whereas 
fainter blue dots represent lower values of ܾ୬୭୫. A) ݈݁ܤ୬୭୫ ൒ 0.47. B) ݈݁ܤ୬୭୫ ൒ 0.51. C) ݈݁ܤ୬୭୫ ൒ 0.56. D) 
୬୭୫݈݁ܤ ൒ 0.57. E) ݈݁ܤ୬୭୫ ൒ 0.70. F) ݈݁ܤ୬୭୫ ൒ 0.83. G) ݈݁ܤ୬୭୫ ൒ 0.97. H) ݈݁ܤ୬୭୫ ൌ 1.00. 



Conclusions 
 

A hazardous NEA mitigation campaign planning based on uncertain information on the fundamental asteroid 
characteristics has been studied to improve the mitigation campaign credibility, where one of the possible forms of 
mitigation campaign – dual-deflection campaign – has been investigated in detail. In order to evaluate the 
confidence level on deflection missions subject to the uncertain NEA characteristics, the uncertainty 
quantification technique called Evidence Theory is used. The preliminary results of the dual-deflection campaigns 
consisting of a primary KI and a secondary GT have shown that: 
 

 Dual-deflection campaign planning involves a series of competing aspects that must be assessed and constraints 
associated with the specific configurations of KI-GT to be satisfied to plan a mitigation campaign with 
sufficient performance (i.e. deflection) and high confidence in successful deflection (i.e. Belief). 

 Given a GT as a secondary deflection mission, Belief of nominal deflection can be improved by years of GT 
interception manoeuvre before and after a primary deflection mission for the KI-GT campaign scenario. 
However, this does not necessarily means that the GT must always commence its interception immediately after 
the NEA rendezvous but the actual operation of the GT is subject to the in-situ NEA characteristics. 

 Given a 10-year warning time, a mitigation campaign with a completion time of approximately half the warning 
time seems to be more reasonable than a longer-term mitigation campaign or a mitigation campaign with a 
heavier total interceptor mass at the EDS. In other words, this appears to be due to the deflection performance 
decrease with time and increase in the launch cost of necessary mitigation systems for a shorter-term mitigation 
campaign. 

 Possible keyhole passage due to undesired deflection by a primary interception can be avoided by a GT as a 
secondary deflection mission in a dual-deflection campaign given the necessary amount of deflection in order to 
avoid the keyhole passage is 1000km. 

 
Finally, the particular campaign planning approach presented here could be useful for the near-future hazard 

mitigation campaigns where we might have to tap into our incomplete knowledge on NEAs for mitigation 
campaign design, allowing us to select the best possible combination of deflection missions from a catalogue of 
various possible mitigation campaign options, without compromising the campaign credibility. However in the 
foreseeable future, further knowledge about the NEA population and some specific NEAs will have steadily 
accumulated and improved through the forthcoming NEA survey and exploration missions such as NEOSSat, 
Sentinel, Hayabusa2, and OSIRIS-Rex as well as the recently announced NASA’s NEA retrieval mission to be 
launched as soon as the year 2017. 
 

Appendices 
 
A.1. BPA structures for NEA physical properties 
 

The uncertain NEA physical properties, more specifically, micro density ߩ୫୧ୡ୰୭, micro porosity ୫ܲ୧ୡ୰୭, bulk 
porosity ୠܲ୳୪୩, and albedo ݌௩ are represented in the forms of BPA structures (i.e. a set of interval values with 
prescribed BPAs), respectively. The BPA structures for the S-type, C-type, and M-type NEAs are given in Table 
10. Also, three different characterisation scenarios (the ground-based, space-based, and proximity-based 
characterisation scenarios) are taken into consideration, where differences in three uncertainty levels are 
represented appropriately by scaling down the overall interval of any parameter which is eligible to be more 
certain and by referring to the capability and limits of respective characterisation scenarios. The following 
sub-subsections present the details on the formation of the BPA structures for the respective taxonomic classes 
and the characterisation scenarios, acknowledging all the corresponding supporting information regarding these 
NEA physical properties. 
 
A.1.1. S-type 
 

The meteorite analogues of S-type asteroids were believed to be stony meteorites even before the Hayabusa 
spacecraft visited the S-type asteroid, namely 25143 Itokawa. The Hayabusa mission finally confirmed directly 
that the characteristics of Itokawa’s surface grains returned by the Hayabusa spacecraft are consistent with the 
characteristics of L, LL, and partly H chondrites [26]. Most importantly, the Hayabusa mission has proved the 
analogy between meteorites and NEA compositions through the in-situ study of the asteroid for the first time. 

The microscopic physical parameters of S-type asteroids are often estimated by referring to their meteorite 
analogues – ordinary chondrites (OCs), assuming they are homogeneously composed of OCs, L, LL, and H 
chondrites in particular. Although, the Hayabusa mission revealed that Itokawa’s surface is mostly made of L and 
LL chondrites [27], we cannot rule out the possible presence of subsurface metal-rich particles such as H 
chondrites buried inside Itokawa due to successive impact events. 



BPA structures for the physical properties of S-type asteroids are given in Table 10. The BPA structures for the 
micro density ߩ୫୧ୡ୰୭ are formed by referring to 437 samples of H, L, and LL chondrites [28]. In order to form the 
BPA structures for the micro porosity ୫ܲ୧ୡ୰୭, micro porosities of 691 OCs [29] are referred and aggregated with 
additional data on micro porosities of 291 OCs from the different literature [30] by Dempster’s rule of 
combination [21]. While most meteorites found on Earth spent long periods of time on the ground, and thus they 
are affected by considerable terrestrial weathering, it is noteworthy that the literature referred for ୫ܲ୧ୡ୰୭ of OCs 
used in this study is de-biased to such effects. This is due to the fact that the majority of meteorite falls are stony 
meteorites and about 80% of which are OCs, hence the amount of information on non-weathered OCs is 
consequently most abundant among our collection of meteorite collection. 

The abundance of S-type asteroids amongst the well-characterised asteroids [14] and the series of exploration 
missions to the S-type asteroids also results in better understanding of the macroscopic characteristics of S-type 
asteroids. The BPA structures for the bulk porosity ୠܲ୳୪୩ of S-type asteroids are formed by referring to the bulk 
porosities of 7 existing S-type asteroids (smaller than 100 km in diameter) with bulk porosities ranging 20–60% 
[14]. Finally, the BPA structures for the albedo ݌௩ are formed by referring to the observed geometric albedos of 
30 different S-type asteroids [31]. 
 
A.1.2. C-type 
 

The microscopic physical parameters of C-type asteroids can be roughly estimated by referring to their 
meteorite analogues – carbonaceous chondrites (CCs), assuming they are homogeneously composed of CCs. 
Since CCs represent less than 5% of stony meteorite falls, the information on non-weathered CCs is limited.  

BPA structures for the physical properties of C-type asteroids are given in Table 10. The BPA structures for the 
micro density ߩ୫୧ୡ୰୭ is formed by referring to 11 CM chondrites [32]. The micro porosity ୫ܲ୧ୡ୰୭ is simply 
assumed to be 15.5–30.5% [28] which is consistent with the work of Flynn et al. [33]. This simple assumption is 
mainly due to the insufficient amount of sample data for non-biased micro porosities of CCs. 

C-type asteroids are second most abundant amongst the discovered NEAs, however unlike S-type asteroids, 
in-situ exploration missions to C-type asteroids (e.g. Hayabusa 2 and OSIRIS-REx) are yet to be sent, and hence 
the macroscopic characteristics of C-type asteroids are highly unknown. The BPA structures for the bulk porosity 

ୠܲ୳୪୩ of C-type asteroids are formed by referring to 8 existing C-type asteroids of various sizes with bulk 
porosities ranging 30–70% [14]. Finally, the BPA structures for the albedo ݌௩ are formed by referring to the 
observed geometric albedos of 18 different C-type asteroids [31]. 

Some of the discovered M-type asteroids (e.g. 21 Lutetia, 22 Kalliope, 129 Antigone, and 785 Zwetana) are not 
entirely consistent with typical iron-nickel meteorite analogues whereas (e.g. 16 Psyche, 216 Klepatra, and (6178) 
1986 DA) appear to be metallic. One of the smallest M-type asteroids, namely (6178) 1986 DA is a very good 
candidate of metallic asteroids which are thought to be a remnant of the core of a fractured primitive body from the 
early solar system. The meteorite analogues of metallic M-type asteroids are basically iron meteorites. 
 
A.1.3. M-type 
 

The microscopic physical parameters of M-type asteroids can be roughly estimated by referring to their 
meteorite analogues – iron meteorites, assuming they are homogeneously composed of iron meteorites. Iron 
meteorites represent less than 6% [34] of all the meteorite falls, and thus the amount of information on 
non-weathered iron meteorites is most limited. 

Iron meteorites are known to be more immune to terrestrial weathering, and thus there is usually less difference 
between weathered and unweathered samples than fragile chondrite meteorites. BPA structures for the physical 
properties of M-type asteroids are given in Table 10. The BPA structures for the micro density ߩ୫୧ୡ୰୭ is formed 
by referring to 21 iron-nickel meteorites [35]. The micro porosity ୫ܲ୧ୡ୰୭ is simply assumed to be 0–1.2% [36]. 
This range is consistent with the iron-nickel meteorites of the Vatican collection with porosities of near zero [37]. 

M-type asteroids are least abundant amongst the three asteroid types, and thus their macroscopic characteristics 
are mostly unknown. Not to mention, they have not been characterised by spacecraft and, unlike S-type and 
C-type asteroids, remote characterisation of M-type asteroids is not an easy task because the spectrum analysis of 
them provide us with less information than that of the other two types does. The BPA structures for the bulk 
porosity ୠܲ୳୪୩ of M-type asteroids are formed by referring to 7 existing M-type asteroids of various sizes with 
bulk porosities ranging 0–40% [14]. Finally, the BPA structures for the albedo ݌௩ are formed by referring to the 
observed geometric albedo of 10 different M-type asteroids [31]. 
  



Table 10 BPA structures for the NEA physical properties of S-type, C-type, and M-type asteroids. 
A) Ground-based characterisation. B) Space-based characterisation. C) Proximity characterisation. 

 

A) S-type C-type M-type 
       

 Interval BPA Interval BPA Interval BPA 
 ୫୧ୡ୰୭ (g/cm3) [3.23, 3.30] 0.31 [2.57, 2.60] 0.18 [7.59, 7.60] 0.05ߩ
 [3.30, 3.50] 0.29 [2.60, 2.70] 0.36 [7.60, 7.80] 0.19 
 [3.50, 3.70] 0.33 [2.70, 2.80] 0.18 [7.80, 8.00] 0.62 
 [3.70, 3.84] 0.07 [2.80, 2.86] 0.27 [8.00, 8.07] 0.14 

୫ܲ୧ୡ୰୭ (%) [3.7, 5.0] 0.01 [15.5, 30.5] 1.00 [0.0, 1.2] 1.00 
 [5.0, 7.5] 0.10     
 [7.5, 10.0] 0.30     
 [10.0, 12.5] 0.32     
 [12.5, 15.0] 0.22     
 [15.0, 16.3] 0.05     

ୠܲ୳୪୩ (%) [16.4, 30.0] 0.43 [27.5, 40.0] 0.25 [0.0, 10.0] 0.43 
 [30.0, 40.0] 0.14 [40.0, 50.0] 0.37 [10.0, 20.0] 0.14 
 [40.0, 50.0] 0.29 [50.0, 60.0] 0.25 [20.0, 30.0] 0.14 
 [50.0, 56.0] 0.14 [60.0, 67.8] 0.13 [30.0, 37.9] 0.29 
 ௩ [0.10, 0.15] 0.27 [0.04, 0.05] 0.33 [0.08, 0.11] 0.30݌
 [0.15, 0.20] 0.37 [0.05, 0.06] 0.44 [0.11, 0.13] 0.40 
 [0.20, 0.25] 0.23 [0.06, 0.07] 0.17 [0.13, 0.16] 0.10 
 [0.25, 0.28] 0.13 [0.07, 0.073] 0.06 [0.16, 0.17] 0.20 

 

B) S-type C-type M-type 
       

 Interval BPA Interval BPA Interval BPA 
 ୫୧ୡ୰୭ (g/cm3) [3.23, 3.30] 0.31 [2.57, 2.60] 0.18 [7.59, 7.60] 0.05ߩ
 [3.30, 3.50] 0.29 [2.60, 2.70] 0.36 [7.60, 7.80] 0.19 
 [3.50, 3.70] 0.33 [2.70, 2.80] 0.18 [7.80, 8.00] 0.62 
 [3.70, 3.84] 0.07 [2.80, 2.86] 0.27 [8.00, 8.07] 0.14 

୫ܲ୧ୡ୰୭ (%) [3.7, 5.0] 0.01 [15.5, 30.5] 1.00 [0.0, 1.2] 1.00 
 [5.0, 7.5] 0.10     
 [7.5, 10.0] 0.30     
 [10.0, 12.5] 0.32     
 [12.5, 15.0] 0.22     
 [15.0, 16.3] 0.05     

ୠܲ୳୪୩ (%) [21.4, 30.0] 0.43 [32.5, 40.0] 0.25 [2.86, 10.0] 0.43 
 [30.0, 40.0] 0.14 [40.0, 50.0] 0.37 [10.0, 20.0] 0.14 
 [40.0, 50.0] 0.29 [50.0, 60.0] 0.25 [20.0, 30.0] 0.14 
 [50.0, 51.4] 0.14 [60.0, 62.5] 0.13 [30.0, 32.9] 0.29 
 ௩ [0.14, 0.15] 0.31 [0.041, 0.05] 0.33 [0.09, 0.11] 0.30݌
 [0.15, 0.20] 0.42 [0.05, 0.06] 0.44 [0.11, 0.13] 0.40 
 [0.20, 0.25] 0.27 [0.06, 0.07] 0.17 [0.13, 0.15] 0.10 
  [0.07, 0.071] 0.06 [0.15, 0.16] 0.20 

 

C) S-type C-type M-type 
       

 Interval BPA Interval BPA Interval BPA 
 ୫୧ୡ୰୭ (g/cm3) [3.26, 3.30] 0.31 [2.59, 2.60] 0.18 [7.64, 7.80] 0.20ߩ
 [3.30, 3.50] 0.29 [2.60, 2.70] 0.36 [7.80, 8.00] 0.65 
 [3.50, 3.70] 0.33 [2.70, 2.80] 0.18 [8.00, 8.04] 0.15 
 [3.70, 3.76] 0.07 [2.80, 2.83] 0.27   

୫ܲ୧ୡ୰୭ (%) [8.2, 10.0] 0.35 [19.8, 26.3] 1.00 [0.0, 1.2] 1.00 
 [10.0, 12.5] 0.39     
 [12.5, 13.2] 0.26     

ୠܲ୳୪୩ (%) [34.4, 34.4] 1.00 [45.7, 45.7] 1.00 [13.1, 13.1] 1.00 
 ௩ [0.17, 0.20] 0.61 [0.049, 0.05] 0.43 [0.11, 0.13] 0.80݌
 [0.20, 0.21] 0.39 [0.05, 0.06] 0.57 [0.13, 0.131] 0.20 
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