IAA-PDC13-04-27

Catching a Rolling Stone: Dynamics and Control of a Spacecraft and an Asteroid

Carlos Roithmayr¹, Haijun Shen², Mark Jesick², and David Cornelius²

¹ NASA Langley Research Center, Hampton, Virginia
 ² Analytical Mechanics Associates, Inc., Hampton, Virginia

2013 IAA Planetary Defense Conference April 15 – 19, 2013 Flagstaff, Arizona

Introduction

- NASA is considering the mission proposed by John Brophy et al. in "Asteroid Retrieval Feasibility Study," April 2, 2012
- Spacecraft B (18 × 10³ kg) collects small asteroid A, ~7 m dia. (~500 × 10³ kg), or small boulder from a larger asteroid
- Spacecraft transports A to orbit in Earth-Moon system
- Requires solutions to same engineering problems as asteroid deflection

Dynamics and Control of:

1. Initial Approach

From a nearby stationary position, spacecraft approaches and begins hover

2. Hover

Spacecraft B moves such that it is fixed in reference frame (rigid body) A

3. Removal of Relative Angular Velocity

Orientation of *B* is changed so that the opening of the container is facing *A* Angular velocity of *B* relative to *A* is eliminated

4. Descent (Ascent)

Spacecraft descends to collect *A* into container

If asteroid is large, spacecraft ascends after collecting small boulder

5. Removal of Inertial Angular Velocity

Inertial angular velocity of spacecraft and payload (rigidly connected) is eliminated so that thrust and solar arrays can be aimed properly

Asteroid Motion

- Assumed asteroid motion for : Approach, Hover, Descent, Ascent
- Heliocentric circular orbit,
 R = 0.9 AU
- Asteroid spin rates
 ω = 0.5, 1, 5, 10, 60 rev/hr

Initial Approach

Depart from *P*, stationary relative to *A**.

- Minimum ΔV, multi-impulse, trajectories to stations on D
- Keep-out sphere C for collision avoidance
- Relatively inexpensive. $\Delta V = 2.1$ m/s and $\Delta m = 14$ kg for $I_{sp} = 287$ s, $\omega = 60$ rev/hr, time of flight = 2600 s

• Hovering can be prohibitively expensive. $\Delta V = 13$ m/s per minute for $\omega = 60$ rev/hr; $\Delta m = 84$ kg after 1 minute

Removal of Relative Angular Velocity (Spin-up)

- Attitude control algorithm developed to
 - Keep S/C axis of symmetry parallel to a line fixed in A
 - Drive relative angular velocity ${}^{A}\omega^{B} = {}^{N}\omega^{B} {}^{N}\omega^{A}$ to 0
 - Assume no particular relative orientation is required about the symmetry axis, between A and B

- Example with tumbling asteroid
 - A is unsymmetric:

$$J_1 = 2.5 \times 10^6 \text{ kg-m}^2$$

$$J_2 = 4.1 \times 10^6 \text{ kg-m}^2$$

$$J_3 = 3.4 \times 10^6 \text{ kg-m}^2$$

$$- \text{ At } t = 0, \text{ }^{N} \omega^{A} = [0.6 \ 0.6 \ 6.0] \text{ deg/s}$$

Descent

- ΔV is a function of ω,
 λ, and time of flight
- Descending too quickly or too slowly can be expensive

 Curves for ascent have similar character; large payload mass significantly increases propellant mass compared to descent

Removal of Inertial Angular Velocity (Despin)

- Asymptotically stable attitude control algorithm developed
 - Dissipates rotational kinetic energy; drives ^Nω^B to **0** without constraining final attitude
 - Use of control energy can be adjusted
- Example, unsymmetric rigid body formed by B and A

Conclusions

- 1. Initial Approach to a NEA is not expensive
- 2. Hover can be prohibitively expensive
- 3. Removal of Relative Angular Velocity
 - A feedback controller is developed
 - Spin-up is moderately expensive

4. Descent (Ascent)

- Descent along a line fixed in the asteroid can be moderately expensive
- Ascending with a massive payload can also be expensive

5. Removal of Inertial Angular Velocity

- An asymptotically stable feedback controller is developed
- Inducing tumbling in an unsymmetric body can save much propellant

Retrieving a Boulder from Itokawa

- Total Δm = 18 kg, of which 17 are used for ascent and despin
- Boulder mass = 250 × 10³ kg. For planetary defense, contemplate delivering a propulsion system with mass = 250 × 10³ kg