EXPANDING THE REALM OF POSSIBILITY

Impact Generated Air Blast

Presented by Charles Needham

PDC

April, 2013

This work was not sponsored by any government contract or agency.

Sources of Air Blast

- n Supersonic Incident Velocities
 - "Sonic Boom"
 - Strength of the shock increases with velocity
 - Shape of incoming is secondary
 - Impact Energy Release
 - Is Impactor Geometry Dependent
 - n Long Rod vs. Blob
 - Air Column Following the Impactor

Range of Velocities

- n Conventional Penetrating Bombs
 - 700 to 1400 ft/sec (200 to 400 m/sec)
- n Boosted Penetrators
 - 1100 to 3000 ft/sec (400 to 900 m/sec)
- n Fragments from Munitions and Shaped Charges
 - 1200 to 12,000 ft/sec (350 to 3500 m/s)
- n Ballistic Missiles
 - Dependent on re-entry trajectory
 - 3,000 to ~15,000 ft/sec (1 to 5 km/s)
- n Meteors
 - I To 18 km/s

Rectangular Cylinder at 10 kft/sec

Velocity Field for Cylinder

ARA

Shocks from Cylinder

- **n** ~10 bars (150PSI)
 - Extends well behind the cylinder
 - Decays slowly with distance
- n Air Kinetic Energy
 - Velocity of ~1.5 km/s (4800 ft/s)
 - Radius of ~twice the radius of the cylinder
 - Extends well behind the cylinder (>50 diameters)
 - Density near ambient

Pressure for Cylinder, 10kft/s

Velocity Field Cylinder, 10kft/s

Velocity Vectors 40. 7998 3999 1 7740 Max Velocity 7480 36. 3.52E+05 7220 6960 cm/s 6700 32. 6440 Vector Scale 6180 One inch is 5920 28. 4.000E+05 5660 5400 cm/s 5140 One lnch 24. 4880 4620 rvely 4360 3.048E+05 4100 20. 3840 cm/s 3580 3320 16. 3060 2800 2540 12. 2280 2020 1760 8. 1500 1240 980 720 4. 460 1 0. -12. -8. 8. 12. 16. -20. -16. -4. 0 4. 20. super Airflow Problem Cylinder

Time 50.000 msec Cycle 100015.

Expanding the Realm of Possibility

altitude m

Shock extent

- n Pressure ~2 bars at 20 m behind the cylinder
- n High velocity column of air extends over 40 m behind the cylinder
 - Kinetic energy of the following air mass
 - Ø Energy = $\rho r^2 Lr U^2 / 2 = \rho 100^2 * 4000 * 1.2e 3 * 1.5e5^2 / 2 = 1.7e15$ ergs
 - Ø Equivalent of at least 40 kilograms of TNT

Full 3-D Calculation of Guided Bomb with Turbulence, 1.4 kft/s

Impact Energy Conversion

n Change in kinetic energy is converted to internal energy

- Dependent on relative material density
 - Square root of impactor density to surface material density
 - Small scale experiments indicate crater volume goes as the 1.74 power of V
- Assume this is proportional to energy in the target
 Shock, ejecta, motion, heating
- n Assume the excess energy goes into air blast

$$E_{blast} = 0.5M(V^2-V^{1.7})$$

Expanding the Realm of Possibility

.30 Caliber bullet at 850 m/sec

Photos courtesy of and with the permission of the Heflin steel division of the ESCO Corp.

Copper jacketed lead bullet, impacting a steel plate.

Essentially Disintegrates (melts) on impact, no significant crater

Energy Excess to Air Blast

Air blast energy vs velocity

Air Blast Implications

- At ~ 3 km/s the air blast energy will be the equivalent of the impactor mass of TNT
- At ~ 4 km/s the air blast will be the equivalent of twice the impactor mass of TNT
- n Air column impact ~ 1/4 impactor energy
- Additional energy from burning of aluminum and steel may contribute to Air Blast
- All are above the energy in ground shock and cratering

Experimental Confirmation

- n 1973 Sandia sled test, Jack Reed pressure measurements
- Measured pressure of the sonic boom
 - Array of gauges on a line parallel to the sled track
 - Secondary signals not related to sled passing
 - Used arrival times to determine the signal origin
 - ø target at the end of the track
- **n** Used pressure peaks, impulse and rate of decay
- n Able to determine the effective yield of the air blast

Sound a "good fit" when he used the TOTAL kinetic energy of the sled, motor, fuel and test object

n The energy in the blast wave was indistinguishable from the total kinetic energy of the impacting mass

Meteor Example

- **n** M = 12,000 metric tons = 1.2e10 gm
- **n** V = 18 km/s = 1.8e6 cm/s
- **n** Total Kinetic Energy = 1.94 e22 ergs ~462 kt
- n Cylindrical source ~30 km long, 16° slant angle
 - Uniform or finite number of "point" detonations

Ø Makes little difference

- n Height centered ~30 km
- n Use square root scaling, gives ~1.5 PSI incident on the ground
 - ~ 3 PSI reflected

Conclusions

n Air Blast Shock Contributions

Bow shock

Limited range and pressure

Air Column

May be comparable to impact energy

n Supersonic expansion

- n Impact excess Kinetic Energy
 - Could be 2 to 3 times the equivalent mass of TNT
 - Currently based on centimeter sized impactors and Mach 3 Sled tests

Need larger scale experiments to confirm these claims

