Influence of porosity on impulsive asteroid
mitigation scenarios

2015 Planetary Defense Conference, Frascati, Roma, Italy

14 April 2015
Eric B. Herbold, David Dearborn, Paul Miller

B Lawrence Livermore
National Laboratory

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344, and partially funded by the Laboratory
Directed Research and Development Program at LLNL under tracking
code 12-ERD-005. Lawrence Livermore National Security, LLC




Two Types of Asteroids Composed
of Many Parts

Gravitational Aggregates Fractured Consolidated Body
Example: Asteroid 143thaa Example: Eros
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Image from J. Saito, et al, “Detailed Images of Asteroid 25143 Itokawa from
Hayabusa”, Science 312, 1341 (2006)

Measurements Apparent Fracture
MaSS = 358 1 010 kg Imgge from J. Veverka, et al, “NEAR at Eros: Imaging and Spectral Results”,
Density — 1 95 g/CC Science 289, 2088 (2000)

Porosity = 40% Measurements

Measurements from S. Abe, et al, “Mass and Local Topography Mass = 6.81 101° kg

Measurements of ltokawa by Hayabusa”, Science 312, 1344 (2006) Density - 2 67 g/CC

*Other examples are: Porosity = 1'0_300/

Mathilde [AF Cheng, Adv. Sp. Res, 33, 1558 (2004)] y Y ) '

Castalia [Asphaug, et al, Nature, 393, 437 (1998)] I\RA:::;tjst?”s‘i?;zgeo?s;' \Z/S‘égrgégéf" NEAR at Eros: Imaging and Spectral

LLNL-PRES-xxxxxx l

Lawrence Livermore National Laboratory



0. |[GPa]

We are currently investigating advancements in
EOS and constitutive models for asteroids
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= Asteroid regolith: developing new thermomechanical

constitutive models

= Strength coupled to EOS for chondritic materials

® H6 chondrite Kernouve (Schmitt,
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Asteroid initial density will be known more
accurately than its compressibility
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= 4 simulated materials with the same overall
density (different levels of porosity).

= 1D planar shock results from 1-20 km/s shown
for each material.

Blowoff momentum from a standoff explosion or
hypervelocity impact

Example Chondrite Morphologies
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(1) Binzel, et. al., Icarus (2009) (2) Consolmagno, et. Al. Chemi der

Erde (2008)

(3) Tomeoka, et. al., Geochimica
et Cosmochimica Acta (1999)

NEA population mostly LL chondrites
[Vernazza, Nature (2008)]

(4) Saito, et. al., Science (2006)
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melt depth [cm]

Porous compaction may increase melt depth
up to a precipitous drop
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Shock wave not generated for
40% or 60% porous material
with

= Stronger shocks observed in low
porosity materials

= Melt depth increases for porosities
from 0-30% for our materials with
pPo=1.26 gl/cc.
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Estimation of Boulder Sizes in

Simulated Asteroids
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Image from D.E. Grady, “Length scales and size distributions in dynamic
fragmentation”, Int J Frac 163, 85 (2010)
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Fig. 2. Cumulative boulder size distribution on the
surface of Itokawa. Horizontal axis shows the width
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Fractured
bedrock

bedrock

Image from J.E. Richardson Jr, H.J. Melosh, R.J.
Greenberg, D.P. Obrien, Icarus, 179, 325 (2005).
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Image from J. Saito, et al, “Detailed Images of Asteroid 25143 Itokawa from
Hayabusa”, Science 312, 1341 (2006)
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We can model fractured bodies and
gravitational aggregates (rubble piles)

Initial conditions: Energy
deposited into regolith “cap”

Fractured
Body

Gravitational Aggregate
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5.4 kt deposition results show better coupling for microporous
object
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We can model fractured bodies and
gravitational aggregates (rubble piles)
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Conclusions

= For impacts and stand-off explosions alike, high porosity
(micro, macro or combined) may prohibit shock wave
generation.

= Comparing 4 materials with different porosities, a shock
was not produced for porosities above 40%. This affects
the melt depth by over an order of magnitude in 1d
simulations.

= The internal structure of asteroid objects affects the
dispersion of fragments meaning that if external
symmetry is observed one should not necessarily expect
a linear response (i.e. may generate rotation due to
internal structure too)
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