# Influence of porosity on impulsive asteroid mitigation scenarios

2015 Planetary Defense Conference, Frascati, Roma, Italy

14 April 2015

Lawrence Livermore National Laboratory

Eric B. Herbold, David Dearborn, Paul Miller



#### LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and partially funded by the Laboratory Directed Research and Development Program at LLNL under tracking code 12-ERD-005. Lawrence Livermore National Security, LLC

# Two Types of Asteroids Composed of Many Parts

#### **Gravitational Aggregates**

Example: Asteroid 25143 Itokawa



Image from J. Saito, et al, "Detailed Images of Asteroid 25143 Itokawa from Hayabusa", Science **312**, 1341 (2006)

#### Measurements

Mass =  $3.58 \ 10^{10} \text{ kg}$ Density = 1.95 g/ccPorosity = 40%

Measurements from S. Abe, et al, "Mass and Local Topography Measurements of Itokawa by Hayabusa", Science **312**, 1344 (2006)

\*Other examples are: Mathilde [AF Cheng, Adv. Sp. Res, **33**, 1558 (2004)] Castalia [Asphaug, et al, Nature, **393**, 437 (1998)]

#### Lawrence Livermore National Laboratory

#### **Fractured Consolidated Body**

Example: Eros







Image from J. Veverka, et al, "NEAR at Eros: Imaging and Spectral Results", Science **289**, 2088 (2000)

Measurements Mass =  $6.81 \ 10^{15}$  kg Density = 2.67 g/cc Porosity = 10-30%

Measurements from J. Veverka, et al, "NEAR at Eros: Imaging and Spectral Results", Science **289**, 2088 (2000)

LLNL-PRES-xxxxxx

# We are currently investigating advancements in EOS and constitutive models for asteroids



- Asteroid regolith: developing new thermomechanical constitutive models
- Strength coupled to EOS for chondritic materials

# Asteroid initial density will be known more accurately than its compressibility



- 4 simulated materials with the same overall density (different levels of porosity).
- 1D planar shock results from 1-20 km/s shown for each material.
- Blowoff momentum from a standoff explosion or hypervelocity impact





(3) Tomeoka, et. al., Geochimica et Cosmochimica Acta (1999)

(4) Saito, et. al., Science (2006)

NEA population mostly LL chondrites [Vernazza, Nature (2008)]

### Porous compaction may increase melt depth up to a precipitous drop



- Stronger shocks observed in low porosity materials
- Melt depth increases for porosities from 0-30% for our materials with  $\rho_0$ =1.26 g/cc.
- Shock wave not generated for 40% or 60% porous material with



Lawrence Livermore National Laboratory

## We can model fractured bodies and gravitational aggregates (rubble piles)



### 5.4 kt deposition results show better coupling for microporous object



# We can model fractured bodies and gravitational aggregates (rubble piles)



### Conclusions

- For impacts and stand-off explosions alike, high porosity (micro, macro or combined) may prohibit shock wave generation.
- Comparing 4 materials with different porosities, a shock was not produced for porosities above 40%. This affects the melt depth by over an order of magnitude in 1d simulations.
- The internal structure of asteroid objects affects the dispersion of fragments meaning that if external symmetry is observed one should not necessarily expect a linear response (i.e. may generate rotation due to internal structure too)