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DE-STAR and DE-STARLITE Phased Array
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Phase Controllers

DE-STAR Architecture
Described in Lubin et al. (2014), Hughes et al. (2013) and others
Phased array of fiber amplifiers, based on work by Vorontsov et al.
(2009).
Phase Control provides mechanism for:

(1) Beam Formation

(2) Beam Steering



Optical Simulations

Optica| simulations of Simulation of 6 by 6 array
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Laboratory Testing

Mass Ejection Rate vs. Sigma
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Laboratory Experiments for Heating, Mass Ejection

(a) 2D simulation of expected mass ejection vs. sigma (Gaussian beam) for various
power levels, from Lubin et al. (2014).

(b) Laboratory test system. Small camera is an 8-12 um FLIR IR micro-bolometer
unit. Pictured sample is sand. The sand was melted and vaporized.

http://www.deepspace.ucsb.edu/projects/directed-energy-planetary-

defense



Does it work?

* DE-STAR is designed to deliver ~ 50 MW/m? @ 1 AU

 We have built a laboratory test unit that delivers
— Up to 60 MW/m? (not at 1 AU!) ~ flux at surface of Sun
— It works EXTREMELY well! F
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DE-STARLITE

Launch in single SLS Block 1 to LEO Uses lon Engines to rendezvous




Phased Array vs Fiber Array
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SLS Block 1 Deployment 450 kw,
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Launcher Options

Fairing Class Delta IV Delta v Ariane5 | SLS PF1B
Fairing Diameter 5.4-m 8.4-m

Wing Diameter (m)

Array Power Class (kW IMM) 105 190 300 300 450 450



ATK Megaflex — 10m diam — Near UCSB
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DE-STARLITE Mission

Launch Systems

Parameters of various launch

vehicles in consideration for DE-
STARLITE.

18,500 70,000 53,000 28,790

S13 k/kg S19k/kg S1.9k/kg S13 k/kg

5.4 8.4 5.2 5

Flight Expected Expected Flight
proven 2017 2015 proven




Miss Distance (Earth radii)

Orbital Deflection Capabilities

325 m Asteroid with 2 N Thrust
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Miss distance vs.
laser active time for
full numerical 3 body
orbital simulations

Comparison with Av
and 3Av
approximations

Nominal 2 N thrust,

produced by ~30 kW
laser

A modest case for a
DE-STARLITE mission

More thrust available
with larger arrays.



Deflection Time (years)

-
o

0.01

Orbital Deflection Capabilities

Mission Planning

Deflection Time vs. Asteroid Diameter
Assume 50% Laser Amplifier Efficiency
Deflection of 2 Earth Radii
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Estimated deflection time vs.
target diameter and DE-STARLITE
electrical power input from PV

True mission planning requires
detailed knowledge of the target
orbit and the detailed interdiction
scenario.

A 200 m diameter asteroid could

be deflected in ~1 year using a MW
class laser; larger asteroids require
more time.

Assuming a 3Av approximation
often over estimates the deflection
(miss) distance.



System Mass at LEO (metric tons)

Impactor Comparison

System Mass at LEO vs System Electrical Power
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Mission mass at LEO vs. electrical
power available from PV

Assuming:

Nominal 50% laser amplifier
efficiency

Current ATM MegaFlex
capability

l;, = 6,000 s ion engines
Radiator panels of 25 kg/kW
radiated

SLS Block 1 launch of 70 metric
tons to LEO corresponds roughly
to 2-3 MW electrical or roughly 1
MW laser power.



Miss Distance (Earth radii)

Impactor Comparison

325 m Asteroid with 1 GN-s Impulse

40 | r | | | |
Numerical (Antiparallel Impulse) —=—
Numerical (Parallel Impulse) : : :
B FromDelfay ——— g
From 3xX Delta v : : :
30 [ -
A :
0 k | | | | ol % |
0 5 10 15 20 25 30 35 40 4

Time of Impulse Before Would-be Impact (years)

It is clear that the 3Av approximation is not
always accurate, and can be very misleading
in some cases.

Miss distance vs. impulse delivery
time before impact for 1 GN s
impulse 100 ton_ @ 10 km/s (325 m
asteroid)

Larger than SLS Block 1 (70 tons LEO
Closer to SLS Block 2 (130 tons to
LEO)

A miss distance of 2 Earth radii would
require interdiction about 10 years
before impact

The seemingly unusual behavior
from the full simulation is due to
resonance effects from the multiple
orbits



Miss Distance (Earth radii)
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325 m Asteroid with 12 N Thrust

Impactor Comparison

Continual Thrust from Directed Energy Ablation
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Miss distance vs. laser
exposure time for 12 N thrust
on a 325 m diameter asteroid

Parallel and anti-parallel cases
are coincident in the plot

A 2 Earth radii miss requires
~6 years of exposure

An SLS Block 1 could deliver
~5x this thrust 2 ~ 1 year



lon Beam Deflection Comparison

Impact Momentum Transfer vs. Continual Thrust

Asteroid Diameter vs. Spacecraft Mass and Warning Time

Assume 8.5 year build and travel time
100 kwe - Assume 50% Laser Amplifier Efficiency
For Miss Distance of 2 Earth Radii

5
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Asteroid diameter vs. spacecraft
mass at LEO

Left Axis: IBD case

Assumes magnetically shielded
Hall effect thrusters w/ I, of 3000
s, and gridded ion thrusters w/ I
of 6000 s

Right Axis: Laser Ablation Case
Asteroid diameter vs. the
required warning time for a
modest laser ablation system with
100 kW electrical power



Space Simulated Laboratory Test
Transition To:

Travis Brashears
UCSB Physics Department



How Does DE-STAR Use Thrust?

* Mass ejection via laser ablation
* 40 Watt Laser
* Asteroid type material: Basalt




Experimental Design

* Cad Drawing and real picture
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Thrust of Laser Ablation

*Thrust varying with pressure (left)
*Assumed power absorbed by the sample (right)
oFurther study to determine experimental power absorbed
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Space Simulation Chamber Mass
Ejection Test Videos

Bubbling with Ejection Plumes
15 fps
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(Earth radii)

Distance

Miss

Asteroids Are Coming!

~600,000 Asteroids and Coments
Apophis (3.2Gton TNT) — 325m in Diameter
Even small laser feasible for mitigation

30 kW Laser-16 yr-2R; “20 coin tosses all coming up Tails.

325 m Asteroid with 2 N Thrust
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Conclusions

Planetary Defense is feasible with directed energy
e DE-STAR Complements Existing Planetary Defense Strategies
e DE defense is extremely capable and scalable
e Able to deflect virtually all known threats
e Response time is key
Emerging Technologies make DE Defense Feasible and Desirable
e Laser Fiber Amplifiers: 21 kW/kg in near future
e Phased Array Design for Beam Combining over Great Distances
e Sufficient Flux is Generated for Surface Evaporation - Orbit Deflection
Optical Simulations are Promising
e Phase Control Required for Beam Formation is Achievable
Pre deployment of planetary defense asset is key to response
e No terrestrial defense system would be built after enemy launch
e Could use for orbital debris removal as well
Long term program with long term consequences
Contact us if you are interested — www.deepspace.ucsb.edu
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