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Abstract

In this paper, an integrated utilization of analytic keyhole theory, B-plane mapping, and planetary encounter geom-

etry, augmented by direct numerical simulation, is shown to be useful in determining the impact risk of an asteroid

with the Earth on a given encounter, as well as the potential for future encounters. The accurate estimation of the

impact probability of hazardous asteroids is extremely important for planetary defense mission planning. Aster-

oids in Earth resonant orbits are particularly troublesome because of the continuous threat they pose in the future.

Based on the trajectories of the asteroid and the Earth, feasible mission trajectories can be found to mitigate the

impact threat of hazardous asteroids. In order to try to ensure mission success, trajectories are judged based on

initial and final parameters that would make the mission easier to complete. Given the potential of a short-warning

time scenario, a disruption mission considered in this paper occurs approximately one year prior to the anticipated

impact date. Expanding upon the established theory, a computational method is developed to estimate the impact

probability of the hazardous asteroid, in order to assess the likelihood of an event, and then investigate the frag-

mentation of the asteroid due to a disruption mission and analyze its effects on the current and future encounters

of the fragments with Earth. A fictional asteroid, designated as 2015 PDC, is used as a reference target asteroid to

demonstrate the effectiveness and applicability of computational tools being developed for impact risk assessment

and planetary defense mission planning for a hazardous asteroid or comet.

Keywords: impact risk, impact probability, asteroid 2015 PDC, planetary defense mission

1. Introduction

There is a very real and ever-present threat that Earth faces every day from asteroids. Most of the impacts are

from objects that are too small to do any damage on the surface due to the fact that they burn up in the atmosphere.

However, there are the rare occurrences where an object does make landfall and causes some serious damage. The

number of identified potentially hazardous near-Earth asteroids (NEAs) is increasing, and so too is the likelihood

of one of those asteroids posing a non-negligible threat to the planet. The human race is in a unique position to do

something about those threats, to either mitigate or eliminate them.

Dealing with the threat of any near-Earth object (NEO) has three main steps: detection/tracking, characteriza-

tion, and mitigation. NASA, as well as other organizations, have put a lot of effort into the detection/tracking of

all near-Earth objects, both threatening and non-threatening. At the Asteroid Deflection Research Center (ADRC)

of Iowa State University, there has been a lot of research work done on mitigation methods regarding NEOs with

short warning times (<10 years) by studying potential mission designs to disrupt hazardous asteroids. This paper

is concerned with asteroid 2015 PDC [1], the disruption mission trajectory design for a Hypervelocity Asteroid

Intercept Vehicle (HAIV) to the target body [2, 3], as well as the methodology used to assess the impact risk of an

asteroid and its fragments.

An in-house design tool, named as the Asteroid Mission Design Software Tool (AMiDST), is used to conduct

the mission and trajectory design for near-Earth asteroid missions [4]. While it does not have the high-fidelity

as some of the existing trajectory and mission optimization tools (such as Mystic, MALTO, Copernicus, SNAP,
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OTIS, and GMAT), it focuses instead on the launch and terminal phases of the NEO mitigation mission design.

AMiDST looks into several launch vehicle and spacecraft configurations based upon several evaluation criteria

such as launch vehicle mass capacity and mission ΔV requirements, as well as relative approach velocity and

approach angle. In addition to these features, it also provides an estimated total mission cost, used only as a final

determination factor between mission configurations.

Techniques such as a high-precision gravitational simulator, encounter geometry, B-plane mapping, and grav-

itational keyholes are used in this paper to quantitatively evaluate the orbital characteristics of an asteroid and its

associated impact risk. A high-fidelity gravitational model is used to propagate the body forward in time to see if

and/or when it would come in close proximity to a planet, particularly Earth. These planetary encounters would

change the asteroid’s orbit, in shape and/or orientation. From the encounter geometry, the post-encounter helio-

centric orbit of the asteroid could be in resonance with the planet resulting in another encounter, or potentially an

impact. Taking advantage of analytic keyhole theory and the encounter’s B-plane, an estimate of the current and

future impact probability of the asteroid can be obtained.

A hypothetical impact scenario of fictional asteroid 2015 PDC is considered in this paper. As described in

[1], the scenario begins as follows: The asteroid is discovered on April 13, 2015, the first day of the conference,

at magnitude 20.9, declination -39 degrees and heading south. It is assigned the designation “2015 PDC” by the

Minor Planet Center, and classified as a Potentially Hazardous Asteroid (PHA) based on its orbit. The asteroid’s

orbital elements are known fairly accurately even in the first few days. Its mean distance from the Sun (semi-major

axis) is 1.77 AU, and the orbital eccentricity is 0.49. Its perihelion distance is 0.90 AU and aphelion distance is

2.65 AU; the orbital period is 864 days (2.37 years). The orbital inclination is fairly small: 5.35 deg. The asteroid’s

orbit comes very close to the Earth’s orbit on its outbound leg, much like the Chelyabinsk impactor, but unlike

Chelyabinsk, this asteroid impacts at its ascending node. Very little is known about the object’s physical properties.

Its absolute magnitude is estimated to be about H = 21.3 ± 0.4, which puts the asteroid’s size at roughly 100 to 500

meters. The large size uncertainty is due to uncertainties in both albedo and H value. At discovery, the asteroid

is quite distant from the Earth, about 0.34 AU (51 million kilometers or 32 million miles). It is approaching our

planet and slowly brightening, but it peaks at only magnitude 20.3 on May 4. It reaches a closest approach of about

0.19 and it peaks at only magnitude 20.3 on May 4. It reaches a closest approach of about 0.19 AU (28 million

km or 18 million miles) from Earth on May 12. It never gets within range of the Goldstone radar and it’s too far

south at close approach for the Arecibo radar. The JPL Sentry system and University of Pisa’s CLOMON system

both identify many potential impacts for this object at several future dates. The most likely potential impact date

is 2022 Sep 3, but the impact probability for that date is still low in the first week after the asteroid is discovered.

Nevertheless, as the object is tracked over the next few weeks, the impact probability for 2022 starts to climb,

reaching 0.2% a month after discovery. Even as the asteroid fades past magnitude 22 in early June, it continues

to be observed and tracked since the chance of impact just keeps rising. The first part of the scenario ends in

mid-June 2015, when the probability of Earth impact in 2022 has reached 1% and continues to rise. The rest of

the scenario will be played out at the conference. It is clear that the object will be observable through the rest of

2015, although it will be quite faint (22nd and 23rd magnitude) and observers will require fairly large (2-meter-

class) telescopes to track it. In December 2015 and January 2016, the asteroid will fade through 24th and 25th

magnitudes, requiring very large aperture telescopes such as the 4- and 8-meter class facilities of CFHT, Keck,

Gemini, Subaru, VLT, etc. In the spring of 2016, the asteroid will move too close to the Sun to be observed, and it

will remain unobservable for about 7 months. The asteroid’s uncertainty region at the time of the potential impact

is much longer than the diameter of the Earth, but its width is much less. The intersection of the uncertainty region

with the Earth creates the so-called “risk corridor” across the surface of the Earth. The corridor wraps more than

halfway around the globe.

2. Asteroid Mission Design Software Tool (AMiDST)

An in-house mission design tool, called AMiDST, is used to conduct the mission and trajectory design for

NEO mitigation missions.

2.1. AMiDST Components

In order to run the AMiDST program, the user must input the type of spacecraft that will be used to conduct

the mission. The user has two possible spacecraft configurations, a single-body kinetic impactor and a two-body

HAIV spacecraft. The desire to use a spacecraft concept like the HAIV comes from the fact that most direct

intercept mission with a short warning time (< 10 years) will result in relative arrival velocities of 10 to 30 km/s.

The current nuclear subsurface penetrator technology limits the impact velocity to less than about 300 m/s, due

to the fact that higher impact speeds prematurely destroy the fusing mechanisms of the nuclear explosive devices

(NEDs) [5, 6]. The HAIV concept was developed in order to overcome these technological limitations. As
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Figure 1: Flowchart Illustration of the AMiDST.

previously mentioned, the HAIV is a two-body spacecraft that consists of a fore-body (leader) and an aft-body

(follower), as illustrated in Figures 2 and 3.

Mission cost estimation to design and fabricate the missions is an important task necessary for early assessment

of mission viability and feasibility. The final total cost of each mission is given as a combination of the cost for the

launch vehicle, the spacecraft, and estimated mission operations. A cost estimation algorithm was developed to

determine the costs associated with constructing the spacecraft, based on a number of previous spacecraft missions

with similar goals and parameters. Spacecraft such as Deep Impact, Stardust, and Dawn were researched to find the

cost of developing such spacecraft and a linear polynomial fit was applied to the data to come up with an analytic

formula relating spacecraft mass and cost. As a comparison, the initial mission cost estimates were run through

NASA’s Advanced Mission Cost Model (AMCM) [7], to get a rough order of magnitude approximation. The

estimates from the AMCM came out to be rather rough when it comes to estimating the cost of the constructing

the HAIV spacecraft, mostly due to the fact that the HAIV designs don’t exactly fit into a single mission category

from the available choices. However, the estimates did verify that the estimates are in the appropriate cost range.

The entire design space of mission durations and launch dates is analyzed using a customizable cost function

according to user defined mission parameters. The potential design variables are

X = [JD,ΔV,C3, dispersion, duration, varr, αarr, αLOS , αS un] (1)

where JD represents the Julian date at mission departure, ΔV is the total mission change in velocity required, C3

is the associated mission hyperbolic excess energy at departure from Earth’s sphere of influence, dispersion is the

dispersion time after disruption, duration is the mission duration, varr is the relative arrival velocity between the

asteroid and the spacecraft, αarr is the relative arrival angle between the asteroid and spacecraft at intercept, αLOS

is the line-of-sight angle between Earth and the asteroid at the time of intercept, and αS un is the approach angle of
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Figure 2: (a) View of the HAIV spacecraft in the payload fairing of a launch vehicle. (b) View of the interior of the HAIV, showing the location

of the NED as well as the various spacecraft components[2].

Figure 3: Potential configuration of the HAIV developed by the Mission Design Lab at NASA Goddard Space Flight Center [6].

the spacecraft to the asteroid with respect to the Sun. The cost function is constructed in the following manner

C(X) = f (X) + g(X) (2)

where f (X) is a constant cost attributed to every mission trajectory and g(X) is a variable cost that is dependent on

the state variables used within the trajectory optimization [8]. The components of the overall cost function f (X)

and g(X) take the form

f (X) = ΔV +
√

C3 (3)

and

g(X) = g(JD) + g(dispersion) + g(duration) + g(varr) + g(αarr) + g(αLOS ) + g(αS un) (4)

The component cost functions are defined based on the user defined upper and lower bounds for the state variables

used in the cost function evaluation of the mission design space.

3. Impact Risk Assessment of Asteroid 2015 PDC

Before any work can be done in regards to rendezvous or disruption mission designs, a certain degree of

understanding must be reached in reference to the asteroid’s imposed threat to the Earth.

3.1. Propagation Models

The dynamics that govern the motion of a body in space is highly dependent on the model that is used.

Within the framework of the work described in this paper, two dynamical models are used: the so-called Standard

Dynamical Model (SDM) used to model the free-space propagation of the asteroid body, and a three-body system

that incorporates on the effects of the Earth, Moon, and J2 perturbation for when the asteroid body has passed
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within the sphere of influence (SOI) of the Earth. Given the short amount of time that the asteroid spends within

the Earth SOI, the added perturbations from the Sun and other planets do not amount to enough to warrant their

inclusion within the dynamical model used for that system.

The Standard Dynamical Model takes the form [9]

d2�r
dt2
= − μ

r3
�r +

n∑
k=1

μk

⎛⎜⎜⎜⎜⎝ �rk − �r
|�rk − �r|3 −

�rk

r3
k

⎞⎟⎟⎟⎟⎠ + �f (5)

where μ = GM is the gravitational parameter of the Sun, n is the number of perturbing bodies, μk and �rk are the

gravitational parameter and heliocentric position vector of perturbing body k, respectively, and �f represents other

non-conservative orbital perturbation acceleration. The three most well-known are solar radiation pressure (SRP),

relativistic effects, and the Yarkovsky effect, the former two being the most prevalent effects. Solar radiation

pressure provides a radial outward force on the asteroid body from the interaction of the Sun’s photons impacting

the asteroid surface. The SRP model is given by

�aS RP = (K)(CR)
(AR

M

) ( LS

4πcr3

)
�r (6)

where �aR is the solar radiation pressure acceleration vector, CR is the coefficient for solar radiation, AR is the

cross-sectional area presented to the Sun, M is the mass of the asteroid, K is the fraction of the solar disk visible

at the asteroid’s location, LS is the luminosity of the Sun, c is the speed of light, and �r and r is the distance vector

and magnitude of the asteroid from the Sun, respectively. The relativistic effects of the body are included because

for many objects, especially those with small semi-major axes and large eccentricities, those effects introduce a

non-negligible radial acceleration toward the Sun. One form of the relativistic effect is represented by

�aR =
k2

c2r3

[
4k2�r

r
−

(
�̇r · �̇r

)
�r + 4

(
�r · �̇r

)
�̇r
]

(7)

where �aR is the acceleration vector due to relativistic effects, k is the Gaussian constant, �r is the position vector of

the asteroid, and �̇r is the velocity vector of the asteroid [10].

Within the Earth’s SOI a similar dynamical model is used to that shown in Eq. 5, where the main gravitating

body is the Earth instead of the Sun, the Moon is treated as a perturbing body, and �f is the J2 perturbation. In the

cartesian frame that the propagation would be done in, the J2 perturbation takes the following form

ẍ = −μx
r3
+ 3c

( x
r5

) (
1 − 5z2

r2

)
(8)

ÿ = −μy
r3
+ 3c

( y
r5

) (
1 − 5z2

r2

)
(9)

z̈ = −μz
r3
+ 3c

( z
r5

) (
1 − 5z2

r2

)
(10)

where c = J2μR2⊕/2, r =
√

x2 + y2 + z2, μ is the Earth’s gravitational parameter, J2 the second zonal harmonic, and

R⊕ is the mean Earth’s equatorial radius. The coordinate system is initially fixed with the (x, y) plane corresponding

to the Earth’s equatorial plane [11].

Taking into account the non-gravitational perturbations in the free-space propagation, the error within the

system will increase, but their inclusion would be needed in order to maintain consistency with the planetary

ephemeris. A more complete dynamical model, for either the free-space propagation or the flyby propagation, will

allow the accurate calculation of asteroid impact probabilities and gravitational keyholes, leading to more effective

mission designs. The orbit propagation uses a variable stepsize Runge-Kutta Fehlberg (RKF) 7(8) method that

takes into account the effects of the Sun, all eight planets, Pluto, the three largest main belt asteroids (Ceres, Pallas,

Vesta), Earth’s Moon, as well as the option to include solar radiation pressure and relativistic effects.

3.2. Impact Probability Calculation

Without being given an uncertainty regarding the asteroid’s state at epoch, it is hard to accurately assess the

impact probability of the asteroid body with the Earth. In this section a discussion is presented over the orbital

uncertainty given to the asteroid state and the resulting impact probability calculation.
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Figure 4: Representation of the virtual asteroid cloud close approaches with initial uncertainties of 50 m and 10 m/s in each coordinate

direction, with respect to the Earth’s surface.

Table 1: Orbital element covariance matrix for 2,001 virtual asteroid simulation based on normally distributed initial conditions with 50-m

position uncertainty and 10-m/s velocity uncertainty

a e i Ω ω θ0
a 1.018e-06 -6.574e-07 1.436e-06 -8.602e-06 -4.205e-05 5.062e-05

e -6.574e-07 5.111e-07 -9.148e-07 5.498e-06 1.791e-05 -2.339e-05

i 1.436e-06 -9.148e-07 0.00127 -0.00769 0.00759 7.266e-05

Ω -8.602e-06 5.498e-06 -0.00769 0.0465 -0.0459 -0.000433

ω -4.205e-05 1.791e-05 0.00759 -0.0459 0.0487 -0.00308

θ0 5.062e-05 -2.339e-05 7.266e-05 -0.000433 -0.00308 0.00351

3.2.1. Orbital Uncertainty
Consider an impact risk assessment of the fictional asteroid 2015 PDC. Based on the data provided by NASA’s

Jet Propulsion Laboratory (JPL), the asteroid’s nominal trajectory is known and has an impact probability of about

1%. The uncertainty for the orbit data was not known/given, so certain assumptions are made to find the impact

risk of the asteroid. The estimated impact date of asteroid 2015 PDC with Earth is September 3, 2022, based

on the nominal trajectory given by JPL. Given that we are mostly interested in the terminal end of the asteroid’s

trajectory, looking into mitigation strategies that would be needed and implemented about a year before impact,

the values reported in this section are based on scenarios where the asteroid is one year from impacting the Earth.

Taking the state vector of asteroid 2015 PDC from the nominal trajectory on September 2, 2021, and adding

a standard deviation error on the position values of 50 meters in all three coordinate directions and 10 m/s in all

three directions in the velocity, assuming a normal distribution of each position and velocity about their respective

mean, the impact probability possessed by the asteroid is about 0.001% based on trajectories of the nominal case

and 2,000 additional virtual asteroids. In fact, only 1,304 of the virtual asteroids of the 2,001 virtual asteroids

had an encounter with the Earth. If we only consider the number of virtual asteroids that encounter the Earth in

our impact probability computation, then the value increases to about 0.00153%. Figure 4 shows all the close

approaches of the encountering virtual asteroids. The sphere placed at the origin of the figure represents the Earth.

Due to the wide range of close approaches distances, the Earth appears to be very small in comparison, leading so

such a small impact probability.

A standard deviation error of position and velocity provides a good measure of the position and velocity

variations. But, the best way to understand how initial conditions vary, not only individually but with each other,

as compared to other asteroids is to consider a covariance matrix. Table 1 provides the covariance matrix of the

orbital element initial conditions presented previously. In Table 1, a denotes the semi-major axis (in units of

AU), e the eccentricity, i the inclination, Ω the longitude of the ascending node, ω the argument of periapse, and
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Figure 5: Representation of the virtual asteroid cloud close approaches with initial uncertainties of 50 m and 1 m/s in each coordinate direction,

with respect to the Earth’s surface.

Table 2: Orbital element covariance matrix for 2,001 virtual asteroid simulation based on normally distributed initial conditions with 50-m

position uncertainty and 1-m/s velocity uncertainty

a e i Ω ω θ0
a 1.0183e-08 -6.574e-09 1.434e-08 -8.662e-08 -4.198e-07 5.061e-07

e -6.574e-09 5.111e-09 -9.146e-09 5.525e-08 1.788e-07 -2.338e-07

i 1.434e-08 -9.146e-09 1.273e-05 -7.696e-05 7.590e-05 7.248e-07

Ω -8.662e-08 5.525e-08 -7.696e-05 0.000465 -0.000459 -4.376e-06

ω -4.198e-07 1.788e-07 7.590e-05 -0.000459 0.000488 -3.073e-05

θ0 5.061e-07 -2.338e-07 7.248e-07 -4.376e-06 -3.073e-05 3.509e-05

θ0 the true anomaly angle at epoch - all the angles are in units of degrees. It can be seen in Table 1 that while

there is fairly little variation in semi-major axis and eccentricity, the inclination and all the angles that define the

orbit’s orientation and the position of the body in the orbit have rather large variance and covariance values. In

comparison to other near-Earth asteroids, the covariance matrix for 2015 PDC in this scenario is too large to be

realistic for such an asteroid.

If we narrow the velocity component variations from 10 m/s to 1 m/s, with the same position component

variations and epoch, it is found that all 2,001 of the virtual asteroids cross the Earth’s SOI and have an encounter

with the Earth. The various depths of encounter for the virtual asteroid cloud can be seen in Figure 5. The impact

probability for 2015 PDC, given these position and velocity uncertainties, comes to be about 3.05%. Looking

again at the initial orbital element covariance matrix for this asteroid cloud it can be seen that the values in the

covariance matrix have all decreased by about two orders of magnitude. This implies that changing the variation

in the velocity components by an order of magnitude causes a change in the orbital element covariance matrix

as a whole. While all the virtual asteroids have an encounter with Earth and the impact probability has gone up

drastically, the covariance is still larger than most near-Earth asteroids that have had several observations by Earth

stations or satellites.

If 25 random asteroids (near-Earth asteroids included) are chosen and their covariance matrices are averaged,

the corresponding position and velocity variations for asteroid 2015 PDC can be found so that a more accurate

impact probability can be found at the given epoch. The asteroids used to compute an average asteroid covariance

matrix to compare to that of asteroid 2015 PDC, were asteroids with semi-major axes that were between 1 and
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Table 3: Average orbital element covariance matrix for 25 randomly selected asteroids

e q tp Ω ω i
e 3.240e-08 -4.014e-09 4.279e-07 5.105e-08 8.903e-09 9.819e-07

q -4.014e-09 2.195e-09 -1.457e-07 1.788e-08 4.620e-08 -7.914e-08

tp 4.279e-07 -1.457e-07 6.674e-05 -1.267e-06 3.396e-05 1.586e-05

Ω 5.105e-08 1.788e-08 -1.267e-06 6.571e-07 -5.703e-07 1.399e-06

ω 8.903e-09 4.620e-08 3.396e-05 -5.703e-07 3.044e-05 9.181e-06

i 9.819e-07 -7.914e-08 1.586e-05 1.399e-06 9.181e-06 3.503e-05

Table 4: Orbital element covariance matrix for 2,001 virtual asteroid simulation based on normally distributed initial conditions with 1-m

position uncertainty and 5-cm/s velocity uncertainty

a e i Ω ω θ0
a 2.546e-11 -1.643e-11 3.585e-11 -2.167e-10 -1.049e-09 1.265e-09

e -1.643e-11 1.278e-11 -2.286e-11 1.382e-10 4.470e-10 -5.846e-10

i 3.585e-11 -2.286e-11 3.183e-08 -1.924e-07 1.897e-07 1.8116e-09

Ω -2.167e-10 1.382e-10 -1.924e-07 1.163e-06 -1.147e-06 -1.095e-08

ω -1.049e-09 4.470e-10 1.897e-07 -1.147e-06 1.219e-06 -7.681e-08

θ0 1.265e-09 -5.846e-10 1.812e-09 -1.095e-08 -7.681e-08 8.771e-08

1.5 AU. Some of the notable asteroids that were selected to be apart of the sample were Apophis, Bennu, and

2011 AG5, the rest of the 25 asteroids were selected randomly using the previously mentioned semi-major axis

criterion. The average orbital element covariance matrix of the 25 sample asteroids is shown in Table 3 where tp is

the time of periapse given as a Julian Date and q is the perihelion distance in AU. Comparing a few of the values

in Table 3 with those in Table 2, it can be seen that while the inclination, eccentricity, and argument of periapse

variances are comparable, the variances of the longitude of the ascending node are orders of magnitude different.

As a final check of the impact risk of asteroid 2015 PDC, another 2,001 virtual asteroid simulation was run

using the same epoch, but with position uncertainties of one meter in all three directions and velocity uncertainties

of five centimeters per second in all three directions. Such small uncertainties brings the initial orbital element

covariance matrix of 2015 PDC, much closer to that of the average asteroid for certain parameters and others are

shown to be much smaller than their average asteroid counterpart, as shown in Table 4. The smaller orbital element

variances that come from such small state vector uncertainties implies that the orbit is more well-defined at this

late stage in its trajectory, which would make sense given that it is a year from potentially impacting the planet. In

fact, in this scenario asteroid 2015 PDC has about a 57% chance of impacting the Earth. If the impact probability

is this high at the given point in time, the only chance that humanity would have to avoid getting hit by the whole

asteroid would be to fragment the body and give the fragments time to disperse over the asteroid’s orbital path,

and would only have to run the risk of having a small fraction of the asteroid mass encounter the Earth.

4. Impact and Keyhole Passage Risk Assessment

This section provides a discussion of the methods employed to assess the possibility of an asteroid or asteroid

fragment impacting the Earth or passing through a gravitational keyhole to impact the planet at a future date.

4.1. Impact Risk Assessment
One of the simplest ways, in theory not necessarily computationally, of calculating an impact probability of an

asteroid and a planet is to simply construct a fiels of virtual asteroids about the reference trajectory of the asteroid,

propagate them all through the anticipated encounter date, and calculate the impact probability by dividing the

number of virtual asteroids that hit the planet, known as virtual impactors, by the total number of virtual asteroids

used in the computation. A drawback of this method is that it can be computationally expensive, and the number

of virtual asteroids that would need to be used needs to be at least equal to the inverse of the impact probability

[14]. Alternative methods of impact probability computation have been developed in the literature by using an

impact probability model of the form

IP =
∫ ∫ ∫

V⊕
PDF(x, y, z)dxdydz (11)

To simplify the calculation, the three-dimensional PDF can simplified to one-dimensional by converting the (x, y, z)

position data to spherical coordinates (r, θ, φ), and the triple integral would turn into a single integral over the radius

8



of Earth,

IP =
∫ r⊕

0

PDF(r) dr = CDF(r⊕) −CDF(0) (12)

where CDF denotes the cumulative density function resulting from the radial PDF. It has been shown previously

[4, 16]

IP =
1

2

[
er f

(
r⊕ − μ
σ
√

2

)
− er f

(
0 − μ
σ
√

2

)]
(13)

that the difference between the CFD value at zero and at Earth’s radius results in a difference in the error function,

in terms of the mean (μ) and standard deviation (σ) of the virtual asteroid close-approach radii.

This formulation is incorrect in that analysis however, particularly Equation (13). If the initial variations in

(x, y, z) position are normally distributed about their own means and an associated standard deviations, then the

the resulting error function stemming from the radial PDF would be incorrect. The probability density function

of the error function is a normal distribution, meaning that the radius values of the close-approach values would

have to be normally distributed, which is not true given that (x, y, z) are normal and r =
√

x2 + y2 + z2. The radial

distribution would be Rayleigh or shifted Rayleigh, using two normally distributed, independent variables (x, y),

or even two planar orthogonal coordinates (e.g., (ξ, ζ)). The vector magnitude of the crossing points would be a

Rayleigh distribution, assuming the components are uncorrelated with equal variance and zero mean. The crossing

data will not necessarily have equal variance or zero mean, so a distribution (some type of gamma distribution

possibly) can be fit to the radial position data in order to find a better estimate of the impact probability. The

formulation results in a number between 0 and 1, corresponding to the probability of impact. Having a larger

pool of virtual asteroids used in the computation increases the computation time, but should yield a more accurate

impact prediction.

4.2. Keyhole Passage Risk Assessment
When looking for the possibility of passing through a keyhole on the target B-plane, looking simply at the

radial distribution of the data does not distinguish between data points that are in the correct region of the B-plane

and those that have the component combinations that would result in the radial distance associated with a keyhole.

Different methods exist to answer that question, such as long-term orbital simulations tracking the asteroids or

asteroid fragments or analytic keyhole theory to find the regions in an encounter B-plane that would result in a

resonant return with the planet. Each method has a cost associated with it, the long-term orbital simulations can

take a large amount of computation time but are fairly high-fidelity, while the analytic theory takes a significantly

smaller amount of computation time while proving lower-fidelity results.

4.2.1. Area Method for Keyhole Passage Assessment
The virtual fragments constructed through the orbital uncertainty of a single asteroid fragment propagated

through the encounter B-plane occupy a fraction of the B-plane’s area. The keyhole on the same encounter B-

plane also occupies a fraction of the B-plane area, however, not necessarily the same or even overlapping areas

of the B-plane. This method claims no accuracy, only that it can be a way to quickly evaluate the risk potential

of an asteroid and/or its fragments, and the method does not hold for instances where the keyhole region and the

virtual fragment cloud region are too far removed from each other, where the keyhole passage probability would

be assumed to be zero.

Consider the case where the keyhole region resides near the virtual fragment cloud of the asteroid fragment:

how do we effectively evaluate the potential of the fragment to fall within the keyhole region? This question is

answered using an area method that attempts to capture a majority of the virtual fragments within a bounding box

and is proportional to the ratio of the area of the keyhole region and the bounding box. The example presented

here is only to show the methodology employed, it is not intended to describe an accurate, real-life scenario.

Assume that an asteroid has a virtual asteroid cloud, comprising of 10,000 virtual asteroids, passing through

the Earth’s encounter B-plane such as that indicated by the blue stars and the red stars showing the position of the

same virtual asteroid cloud on the next encounter B-plane in Figure 6. The yellow stars in each cloud indicate

the virtual asteroids that pass within 1.1 Earth radii on the second encounter B-plane. It is worth mentioning that

the crossing points on the first encounter B-plane were created such that the probability of an impact with the

planet on the first pass is zero. Before discussing the first encounter crossing point data, let’s look at the second

encounter data. Of the 10000 virtual asteroids, 66 fall within 1.1 Earth radii of Earth’s surface on that particular

encounter, making the impact probability for the encounter 0.66%. Calculating the impact probability using a

radial position density function, the resulting impact probability is estimated to be about 0.71%, showing strong

agreement between the statistical approximation and the simulated results.

Now, let’s look back to the first encounter crossing data, it can be seen that there is a black box and ellipse

over the crossing point data. The box is constructed to have dimensions large enough to encompass at least 90%
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Figure 6: Example composite encounter B-plane for successive encounters of an asteroid with Earth.

of the data points, and the ellipse is constructed with dimensions such that 95% of the data points fall within the

prescribed area. The precentage values given are simply chosen to capture a large majority of the crossing points

within each region and hold no special significance. When implemented using a simulated asteroid fragment, the

dimensions of the keyhole region will be established based on the theory, so the proportion of the crossing points

falling within the area will be simply the number within the region divided by the simulated fragments.

So, to construct the impact risk assessment for the asteroid based on its virtual asteroid field

IP =
[

Aellipse

Abox

]
pbox pellipse (1 − pellipse) (14)

where Aellipse and Abox are the areas of the ellipse and box encompassed by those shapes on the encounter B-plane,

respectively, and pbox and pellipse are the proportion of the crossing points that fall within the box and ellipse,

respectively. With the resulting formula, the probability of an impact by the asteroid on its second encounter with

Earth is evaluated to be about 0.5%.

Looking at the result, it is easy to see that it is not the same value as those found using either the statistical

approximation or the simulated results on the second encounter B-plane crossing data. The results shouldn’t be

expected to be the same, or even necessarily in the same ballpark, because depending on the amount of time

between encounters the field of virtual asteroids can disperse quite a bit leaving the impact probability on the

second encounter plane to be essentially zero. As previously stated, this formula is not guaranteeing the accurate

assessment of the impact probability of a body on future encounters, but is simply being used to find a solution so

as to give an evaluation of whether or not the body would need to be studied further.

So, the expression described by Equation (14) needs to be revised a bit to find the probability of the aster-

oid/fragment passing through the keyhole on the B-plane. Firstly, the definition of pellipse needs to be changed.

Originally, pellipse represented the proportion of the virtual cloud on the first encounter B-plane that would impact

the Earth on the second encounter B-plane. Now, it represents the proportion of the cloud that falls within the

keyhole region because in the case of a simulated asteroid fragment cloud, unless the cloud is simulated through

to the second encounter B-plane, the number that would impact the Earth would be unknown and the size of the

keyhole on the first encounter B-plane would be known (or at least established). And secondly, in order to deal

with the varying potential keyhole locations on the encounter B-planes, a term has to added to the expression to

represent the proportion of the cloud that makes an encounter with the Earth after the fragmentation event. The

resulting equation used to calculate the probability of an asteroid, or asteroid fragment, passing through a keyhole
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Figure 7: Contour plot of total mission ΔV for a rendezvous mission to asteroid 2015 PDC before its potential Earth impact in 2022.

now takes the form

KP = pencounter

[
Aellipse

Abox

]
pbox pellipse (1 − pellipse) (15)

where pencounter is the proportion of the asteroid/fragment cloud that encounters the Earth, Aellipse is the area of the

ellipse that represents the keyhole region of the B-plane, Abox is the area of the bounding box that encompasses a

sizable portion of the virtual cloud, pbox is the proportion of the cloud that is encompassed by the bounding box,

and pellipse is the proportion of the virtual cloud that falls within the elliptical representation of the keyhole.

If the keyhole exists in a high density region of the virtual cloud, then the resulting keyhole passage probability

from Equation (15) is representative based on the population. A problem arises when the keyhole falls in a low

density region of the virtual cloud. In the case where a handful or so of the virtual asteroids/fragments fall into

or near the keyhole region, the keyhole passage probability can drop dramatically. So something to keep in mind

when looking at the resulting probability values from Equation (15) is the spread of the data and if the number of

data points used is sufficiently large to accept the reported answer. A study could be done to find the number of

sufficient bodies, which is not done within this work’s scope.

5. Mission Designs for Asteroid 2015 PDC

The fictional asteroid 2015 PDC is detected on April 13, 2015 and is believed/known to be on an Earth-

impacting trajectory, with a predicted impact on September 3, 2022. That means that there is about seven years

of time in which any missions can be devised and conducted for reconnaissance or deflection/disruption attempts.

Since the asteroid is only estimated to have a 0.2% impact probability shortly after its discovery, a rendezvous

mission to the target body is considered in order to gain more information about the asteroid’s orbit and physical

parameters. Once a rendezvous mission has launched and had some time near the target, a disruption mission to

the hazardous body can be launched to try and mitigate the threat to Earth.

5.0.2. Rendezvous Mission Designs
For a rendezvous mission, one of the most important parameters to consider, beyond the ability to place the

spacecraft into the appropriate trajectory to meet the target, is the speed at which the spacecraft approaches the

target. The spacecraft has long since detached itself from the launch vehicle that placed it into its interplanetary

trajectory, so the velocity difference between the spacecraft and the target body is the spacecraft’s responsibility to

make up. If that speed is too large, the spacecraft would require a large amount of propellant in order to make up

the speed difference, which in turn may require a larger launch vehicle to place the spacecraft into orbit. Therefore,

one of the quantities to be minimized through the mission optimization process is the total mission ΔV . Figure 7

shows the resulting rendezvous mission contour plot for asteroid 2015 PDC. Looking at the contour plot, it is

easy to see that there are only a handful of regions where potentially feasible rendezvous missions could exist to

this asteroid body. Most of the potentially mission feasible regions lie at the top of the contour plot, where the

mission durations are highest. There is one region however that could have feasible missions around 150 days
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Figure 8: Contour plot of mission V∞ for a rendezvous mission to asteroid 2015 PDC before its potential Earth impact in 2022.

in duration, but the launch date is about a year prior to the expected impact date. Such a late launch date for a

rendezvous, reconnaissance mission does not really allow for the potential of several deflection/disruption mission

attempts, in the case that they fail or do not have the desired effect. In order to allow for a larger window in which

deflection/disruption missions can be conducted in, the time between target acquisition and the expected impact

date, within the AMiDST program, will have a lower bound limit of 1000 days (about 3 years).

Total mission ΔV and acquisition time are only two of the important mission parameters needed to evaluate

mission logistics, the mission V∞ is also needed in order to assess the relative ease with which the launch vehicle

can set the spacecraft in its interplanetary orbit. A lower mission V∞ would indicate that the interplanetary orbit

would be easy to enter into, after leaving the Earth’s sphere of influence. On the other hand, a higher mission

V∞ would be either because the energy of the hyperbolic orbit needed to enter into the required interplanetary

trajectory is very large or the interplanetary trajectory is out of the ecliptic plane. Figure 8 shows the rendezvous

mission V∞ contour plot for asteroid 2015 PDC. Observing the contour plot, it can be seen that the low mission

V∞ values exist in the same regions as the low mission ΔV values, and in a couple other regions as well. In

those regions where the V∞ values are low and the ΔV values are not, it would imply that the relative arrival

velocity between the spacecraft and the target body is the larger contributor to the overall mission ΔV . Despite the

requirement and limitations placed on the value of the mission V∞, in regards to the optimal rendezvous mission,

the limiting factor in this particular mission design will be the total mission ΔV and the relative arrival speed.

In order to find the optimal rendezvous mission for a spacecraft mission to asteroid 2015 PDC, the following

mission parameters were chosen as a part of the optimization process: launch date, total mission ΔV , mission C3,

target acquisition time, mission duration, and relative arrival speed. The resulting mission trajectory is shown in

Figure 9. The green line indicates the track that Earth takes during the time that it takes the spacecraft (blue line)

to arrive at asteroid 2015 PDC (red line). Within the time that it would take the Earth to complete one revolution,

the spacecraft launched on September 5, 2018 would arrive at asteroid 2015 PDC and begin its reconnaissance

mission. The launch window surrounding this optimal mission is fairly small, about four days in length. Despite

the limited length of the launch window, the remaining of the top ten missions occur within that same launch

window but with varying length of mission durations. From that optimal launch window, there would be around

1094 days between the spacecraft’s encounter of the asteroid body and the expected impact date for the spacecraft

to observe the physical parameters of the body and trackle the asteroid’s orbit track around the Sun.

Based on the shape of the spacecraft trajectory for the optimal rendezvous mission depicted in Figure 9, the

spacecraft has to be launched from Earth’s sphere of influence on a fairly high energy hyperbolic orbit (C3 ≈
26.5 km2/s2) because while the interplanetary orbit stays near the Earth’s ecliptic plane, the trajectory reaches

beyond Mars orbit and encounters the asteroid body nearly 2 AU from the Sun (almost 3 AU from Earth). The

total mission ΔV is about 12.38 km/s, about 8 km/s of which are needed by the spacecraft to match the asteroid’s

speed. Based on the resulting optimal rendezvous mission parameter values, the necessary ΔV that the spacecraft

needs to match the asteroid’s speed is relatively large - meaning that the spacecraft needs to be large enough to

hold the necessary fuel needed to make that change in speed. In fact, about 85% of the total spacecraft mass would

need to be fuel in order to successfully achieve that kind of velocity change. So, if the largest version of the HAIV
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Figure 9: Trajectory plot for the optimal rendezvous mission to asteroid 2015 PDC between its discovery date and the expected impact date.

spacecraft is chosen to carry out this mission (mass of 5,720 kg), then only about 950 kg of the spacecraft mass

would be available to be used for the payload, structure, and instrument suites. Assuming that a large enough

spacecraft was constructed, capable of performing the speed matching maneuver, the mass of the spacecraft and

the energetic orbit that it would have be placed in to reach its target in the time alloted would imply that a large

launch vehicle is needed to place that spacecraft into the corresponding interplanetary orbit - large Delta IV or

Atlas V class launch vehicle. To ensure mission success, a large Atlas V or Delta IV launch vehicle, such as the

Atlas V 551 or Delta IV Heavy, is chosen to be used to complete this optimized rendezvous mission. The total

cost to construct the spacecraft, launch vehicle, and conduct the mission operations for this optimized rendezvous

mission would be over $2.1 billion. If the situation truly warranted a rendezvous mission that would enhance the

knowledge of a potentially hazardous near-Earth asteroid, the total mission cost would not be the determining

factor but be considered a small price to pay for future Earth safety.

5.1. Disruption Mission Designs

The difference between a disruption mission and a rendezvous mission is the approach to the target body.

Through the use of the HAIV spacecraft, the relative arrival speed between the spacecraft and the target asteroid

body is necessary to be known for the timing sequence between the fore and aft bodies, but is fairly inconsequential

as far as the optimization is concerned. The optimization process would be conducted in much the same way, but

would ignore the relative arrival speed of the spacecraft to the target asteroid. Before looking at the different

mission design types ((1) long-duration, long-dispersion, (2) long-duration, short-dispersion, (3) short-duration,

long-dispersion, and (4) short-duration, short-dispersion), the total mission ΔV (Figure 10) and V∞ (Figure 11)

contours can be analyzed to understand how accessible asteroid 2015 PDC is from Earth between 2015 and 2022

for an disruption mission. Examining Figure 10, it can be seen that short-durations missions (less than 100 days)

would be very difficult to be feasibly constructed for a spacecraft, outside a few months before the expected impact

date. When looking at mission durations of more than 100 days, it appears that there are periodic regions of the

contour plot where a an intercept mission can be launched to asteroid 2015 PDC. The V∞ contour in Figure 11

validates the notion that short-duration missions would be hard to come by before the few months prior to the

expected impact. Observing the remaining portion of Figure 11, it can be seen that the accessible regions of the

contour plot are smaller than what they appeared to be in ΔV contour plot. Based on the V∞ contour plot, the

easiest times to launch a mission would be soon after its discovery (around the 2015/2016 time frame) and within

a year of the anticipated impact date. Due to the lateness of the rendezvous mission’s departure date and the

focus of the studies conducted by the ADRC being oriented about short-warning times, the mission types that

will be looked at will be long-duration, short-dispersion and short-duration, short-dispersion mission designs. The

rendezvous mission arrives at the target body nearly three years prior to the expected impact date, but to give time

for the spacecraft to gather enough information about the orbit and the physical characteristics of the asteroid,

the mission designs discussed here will focus on dispersion times between seven and 90 days in length - true last

minute disruption missions.
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Figure 10: Contour plot of total mission ΔV for an intercept mission to asteroid 2015 PDC before its potential Earth impact in 2022.

 

Figure 11: Contour plot of mission V∞ for an intercept mission to asteroid 2015 PDC before its potential Earth impact in 2022.
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Figure 12: Trajectory plot for a short-duration, long-dispersion intercept mission to asteroid 2015 PDC.

5.1.1. Short-duration, Long-dispersion Mission
As already stated, the ability to conduct a feasible short-duration, long-dispersion mission is not practical.

However, this mission type is the most desirable disruption mission type given its tendency to maximize the

amount of time from launch to the anticipated impact date. For the case of asteroid 2015 PDC, the optimal

short-duration, long-dispersion mission results are discussed here briefly to show its impracticality.

The required mission ΔV and C3 orbit for a short-duration, long-dispersion mission scenario would be too

large for any launch vehicle currently in operation to place even a small spacecraft into the necessary orbit to

intercept the target body. None of the top 10 optimal missions are feasible: the mission ΔV is nearly 14 km/s from

LEO and the required orbit C3 is about 350 km2/s2. The trajectory depicted in Figure 12, gives justification for

the highly energetic orbit required by the spacecraft to leave Earth and meet 2015 PDC. The optimization process

tried to push the mission duration as high as possible, in an attempt to reduce the required ΔV and C3, but the

restriction of a maximum mission duration of 90 days did not allow for more feasible missions to be considered in

this analysis. The date at which this short-duration, long-dispersion mission would launch would be in the middle

of a launch window centered on December 18, 2016, a little more than a year and a half after discovery of asteroid

2015 PDC. To compound the difficulty of this mission design, if there was some way of getting the spacecraft

into the required interplanetary orbit, there would be the added difficulty of the hypervelocity encounter between

the spacecraft and asteroid. In the case of this optimal mission design, the relative arrival speed between the two

bodies comes to be about 35 km/s, much faster than any relative arrival speed found in other optimal mission

designs. It is possible that a more feasible optimal mission design could be obtained with an alternate definition

of short-duration, but for the sake of consistency between this example asteroid, and the other asteroids studied

[4], the definition is unaltered.

5.1.2. Long-duration, Short-dispersion Mission
Trying to keep the mission duration as long as possible should reduce the necessary amount of mission ΔV

needed to get into the required orbit. The resulting optimal long-duration, short-dispersion mission results in a

total ΔV requirement of 3.273 km/s, most of which would be provided by the launch vehicle leaving from LEO,

and a mission C3 of about 1 km2/s2. And with a spacecraft mass of about 2,500 kg, this mission is easily feasible

for most any launch vehicle to accomplish. The top mission trajectory to asteroid 2015 PDC does not deviate from

the ecliptic much and doesn’t need to go far outside the Earth’s vicinity, which explains the small C3 value and is

made evident by Figure 13. The optimization algorithm was allowed to evaluate missions with durations between

200 and 365 days, where the dispersion time after the spacecraft encounters the target asteroid can be between 7

and 90 days. The top resulting mission design had a mission duration of 245 days and a dispersion time of 7 days.

In fact, this mission was in the middle of a 10 day launch window of optimal missions, where all optimal missions

had dispersion times of 7 days, despite the allowance for more time, and the variation in launch date resulted in a

corresponding change to the mission duration. The length of the mission duration and launch date correspond to

the short dispersion time, and with an expected spacecraft encounter one week prior to Earth impact, the relative

arrival speed between the spacecraft and the asteroid is understandably over 10 km/s, meaning that the guidance
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Figure 13: Trajectory plot for a long-duration, short-dispersion intercept mission to asteroid 2015 PDC.

 

Figure 14: Trajectory plot for a short-duration, short-dispersion intercept mission to asteroid 2015 PDC.

algorithms would need to be fast-responding and highly precise because there is no room for failure.

5.1.3. Short-duration, Short-dispersion Mission
Assuming that it is too late for all other options, or even worse they have all failed, to diminish the threat posed

by asteroid 2015 PDC, a short-duration, short-dispersion mission design is constructed to deal with the imminent

threat from the target asteroid. A short mission duration and short dispersion time implies that the asteroid has

now entered the terminal phase of its orbit with respect to the Earth. Thus, with such a late launch window, the

task of reaching the asteroid from Earth should be simpler to accomplish. The additional constraint of a short

mission duration means that the mission duration has the same time restraint as the dispersion time (7 to 90 days).

The optimal mission trajectory, depicted in Figure 14, shows the simplicity of the orbit needed by the spacecraft

to leave Earth and intercept the asteroid. The results from optimization process show that the longer the mission

duration and the shorter the dispersion time for the desired intercept mission would produce a more manageable

design. Low total mission ΔV and C3 values allow for larger spacecraft and/or smaller launch vehicles to be used,

but the hypervelocity relative arrival speed (≈12 km/s) between the spacecraft and the asteroid mandates the use

of a spacecraft similar to the HAIV for any attempted fragmentation mission.

Despite the ease of these types of mission designs, late launch date and short-dispersion time, it should be

noted that they should be considered as a last resort when all other attempts have failed, and not considered only
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Figure 15: Composite encounter B-plane showing the crossing locations of asteroid 2015 PDC’s fragments.

when there are no other options able to be taken.

5.2. Fragmentation of Asteroid 2015 PDC

Because the work conducted by the ADRC focuses on short warning times, the time from the disruption event

to the asteroid fragments encountering the planet is set to be one year. Assuming the fragment states are normally

distributed about the nominal asteroid trajectory’s states, before the radial perturbation is applied to each fragment,

the fragments are then propagated over that year time span through to their individual encounters with the Earth.

The resulting crossing points of the 10001 virtual asteroid fragments on the encounter B-plane are shown in

Figure 15. It can be seen from the composite B-plane that the asteroid fragments are spread across a wide portion

of the map. For reference, a small circular cross-section of the Earth can be seen centered at the origin.

Of the numerous simulated fragments of asteroid 2015 PDC, a fragment is selected that crosses the B-plane

fairly close to the Earth (about 9 Earth radii from the center of the planet. Using state standard deviations of 10

meters and 1 meter per second, normally distributed about the nominal asteroid fragment states, a field of 10,000

virtual fragments is created and propagated through the encounter B-plane, in addition to the nominal asteroid

fragment’s trajectory. Figure 16 shows the crossing locations of the virtual fragment field on the encounter B-

plane. It can be seen that the 2015 PDC fragment cloud encompasses the Earth. In fact, about 2.9% of the 10,001

simulated virtual fragments pass within 1.1 Earth radii of the center of the planet. A histogram of the radial

distances of the fragment cloud crossing positions is shown in Figure 17. The radial position histogram shows a

skewed distribution, with a large portion of the data being between 0 and about 12 Earth radii. Fitting a gamma

distribution to the radial position data, the calculated probability that the asteroid fragment would fall within 1.1

Earth radii is approximately 2.4%. The B-plane component distributions for the 2015 PDC asteroid fragment

appear to be nearly normal. But, as previously stated, it cannot be assumed that just because the initial fragment

field states are normally distributed that the resulting B-plane components would be normally distributed. The

histograms in Figure 18 show the distributions of the fragment cloud’s B-plane components. Looking at the ξ-
component, the distribution appears to be pretty normal, with a mean a bit larger than one Earth radius. The
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Figure 16: Asteroid 2015 PDC fragment cloud crossing locations on close-encounter B-plane.

 

Figure 17: Histogram of asteroid 2015 PDC’s fragment cloud radial crossing locations.
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Figure 18: Top: Histogram of asteroid 2015 PDC’s fragment cloud ξ components. Bottom: Histogram of asteroid 2015 PDC’s fragment cloud

ζ components.

ζ-component however, appears to be comprised of two different normal distributions (one for the left portion of

the distribution and one for the right portion).

Switching focus back to the current and future risk posed by the asteroid fragment to the Earth, Figure 19

is used to better understand the future risk imposed by the chosen fragment. The plot shows three potential

resonances that the asteroid fragment could fall into given its encounter with the Earth and the crossing location

of the fragment’s nominal trajectory, with respect to the cross-section of the Earth on the B-plane. However, this

fragment’s post-encounter trajectory does not fall into one of those resonance orbits. The calculated, expected

crossing position of the asteroid fragment on the next encounter B-plane is at a ξ-value of about 120 Earth radii

from the center of the Earth, nowhere near the small resonance circles. According to analytic keyhole theory, the

resonances represented by the blue resonance circles have no keyholes on the depicted 2022 B-plane, due to there

being no intersections between the resonance circles and the expected ξ-value line on the future encounter. Just

because this fragment does not present a risk to the Earth in the near future, does not mean that the threat from

this fragment is non-existent. There could be potential dangers to the Earth that go beyond the 10 year future that

was looked at in this analysis. A different methodology must be used to adequately evaluate those future potential

risks because of the length of time between the encounters and the perturbations that could sufficiently effect the

orbit over that timespan.

Even though there has been an assessment of the likelihood of the fragment from asteroid 2015 PDC impacting

the planet on its 2022 encounter, the keyhole passage probability equation (Equation 15) can be used to find another

estimate for the impact probability. For this particular fragment cloud, all 10,001 simulated virtual fragments had

an encounter with the planet, which makes pencounter equal to one. Instead of putting a bounding box around the

simulated crossing locations an ellipse would fit the distribution better, leaving a smaller proportion of the data

outside of the bounding area while including less extraneous areas of the B-plane. Compiling the appropriate

values and plugging them into the formula, the resulting impact probability comes to be about 0.011% - about two

orders of magnitude smaller than the numbers listed previously. The reason for the discrepancy can attributed to

a number of reasons: (1) the value obtained from Equation (15) is made assuming that the crossing locations on

the B-plane are evenly distributed throughout the bounded areas used in the calculations, (2) the estimated impact

probability calculated from the fitted distribution is dependent on how well the distribution fits the data, and (3)

the calculated impact probability using the number of simulated virtual impacts and virtual asteroid fragments is

dependent on the number of simulated asteroid fragments, where the resulting impact probability should approach

the true value as the number of values increases. What can be done with the various impact probabilities from the

fragment cloud is that they can be used as bounds for what the true impact probability would be for the asteroid.

Looking back at Figure 15, it seems that the Earth is sitting in a region of the B-plane map where there is a

non-negligible chance of it getting hit by more than one asteroid fragment, given the modeled fragmentation event.

If it is assumed that the fragmentation only produces the 10001 asteroid fragments simulated in this example, only

about 5,200 of the 10,001 virtual asteroid fragments ended up having an immediate encounter with Earth, and only

15 of those passed with 1.1 Earth radii of the planet center. What that means is that given this type fragmentation

event, with a year timespan for the asteroid fragments to disperse from the original asteroid’s impact trajectory,

the Earth would only be impacted with about 0.15% of the total asteroid mass, rather than the full asteroid mass if
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Figure 19: Depiction of asteroid 2015 PDC’s fragment resonance circles. The black vertical lines depict the corridor where the fragment’s

crossing location on the next encounter B-plane. The red star depicts the fragment’s crossing location on the current encounter B-plane.

nothing were done to deflect/disrupt the target body. And, if the assumption is made that the mass of the asteroid

is evenly distributed among the simulated asteroid fragments, the 15 impacting virtual asteroid fragments would

only cause localized damage to the parts of the Earth they impact (if they make landfall), rather than the potential

regional or global damage that could be caused by the full asteroid impacting the planet.

6. Conclusions

The threat of a fictional asteroid 2015 PDC, which is discovered about seven years prior to its expected impact

date, has been discussed. The process of analyzing the impact risk of this asteroid and designing rendezvous and

disruption missions has also been discussed, with an emphasis on the current and future risk posed by a disruption

mission. Given nothing but the initial asteroid state at a given epoch, an asteroid cloud was constructed using

assumed orbital uncertainties based on orbital uncertainties similar to those of similar near-Earth asteroids. Not

surprisingly, as the orbital uncertainty decreased, the impact risk grew. After analyzing the asteroid fragment

cloud, a representative fragment was selected to be analyzed in terms of its potential resonance orbits, keyhole

existence on the encounter B-plane, and the likelihood of passing through those keyholes. The selected asteroid

fragment has three very small possible resonance circles it could fall in, but the encounters on those future B-

planes occur more than 100 Earth radii away from the Earth, meaning that there is no resonance or keyhole

passage potential. The possibility of that fragment impacting the Earth is non-negligible. Overall, asteroid 2015

PDC is regularly accessible from Earth for deflection/disruption missions, difficult to rendezvous with due to the

shape and orientation of the orbit, has a fairly high impact risk if unabated, and if fragmented a year prior to its

expected impact, the risk to Earth is less due to the amount of fragments that would come near the Earth and the

amount of mass that would encounter the planet.
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