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INTRODUCTION

U Following Chelyabinsk [1,2], and programs for impact mitigation [3,4], we have
established an ARC/LLNL program to understand (1) the physics of meteorite
fall and (2) the characteristics of asteroid surfaces, which inform deflection
strategies.

O Meteorites falls suggest a wide variety of atmospheric behavior (Fig. 1).

O Here we review what can be learned about planetary defense from meteorites
and meteorite falls.

I. THE MECHANICS OF METEORITE FALLS Fig. 1. Observed falls suggest a wide variety

of behavior in the atmosphere.

O Eye witness observations of meteorite falls can provide insights into meteorite
entry, e.g. 20 falls reported in the 1960s produced the following: Explosion 85%, suand s e sies
Rumbling 35%, Whistling 45%, Light 55%, Flares 10%, Dust trail 30%. All falls
before 1860, a sulfurous smell [5]. Witnesses can also record the amount of dust
which provides information on the amount of fragmentation and ablation [6]).

Sm00th at the front perhaps with

O Light curves, for ~ 20 meteorites [e.g. 7-9], provide quantitative information on s flow
the beginning and end of luminous flight, the rate of energy loss, the dynamic o B §
and photometric mass, major break-up events, velocity as a function of time, 1;';"
and especially they can be used to test numerical models.

O The fusion crust records quantitative details of the later stages of flight (Fig. 1), i . o
namely airflow around the meteorite, orientation, thermal gradients, ablation in ;’Zgr.n%tiz ""sg;"ai’n';zl: %’“;‘:i’zt’tgst;‘;e .
rates, fragmentation history, orientation [5,10,11]. P p ge.

0 Meteorite Fragments from ten craters [12] provide an opportunity to test Graand ik - W Con Madan
numerical models because we have two pieces of critical data, the crater and the
meteorite (Fig. 2).

Il. DETAILS OF FALL AND ASTEROID SURFACES

U Meteorite characterization not only aids in modelling atmospheric behavior, it
also has the potential to provide insights into the asteroid surfaces.

U Laboratory Studies of Meteorites enable a large number of relevant

measurements. . . .
Fig. 3. Craters with meteorites: A
O Cosmogenic isotope studies can determine preatmospheric mass (Fig. 3) [5]. test for numerical models.
O An extensive literature database exists for the chemical composition of all i:
classes of meteorite. 14
U Meteorites of the same chemical class can have very different internal g:;
properties that can greatly influence atmospheric behavior (Fig. 4). E H
U Laser-driven shock experiments to measure temperature dependence of flow E i
stress, phase transition pressure, and tensile (spall) strength for a range of 2
meteorite types. Will be measured at LLNL. %) 1020 30 40 50 €0 70 80 50 100
Mass Loss [wih)
O Density, porosity, thermal conductivity, heat capacity, acoustic properties, and
tensile, compressive, and deformation strength, albedo and spectra, will be Fig. 4. Cosmogenic studies: Most
measured at ARC (Fig. 5) [12-15]. meteorites undergo >90% mass loss,

Il. ASTEROID SURFACES 25% show relatively little.

QO The gas-rich regolith breccias (with characteristic light-dark texture) are
samples from the very surface of their parent asteroids and provide unique
information on the surface of asteroids (Fig. 6, [16]).

CONCLUSION

O Meteorite studies constitute an integral part of the Nation’s planetary
defense efforts alongside NEA characterization, numerical studies of
eentry, risk analysis, and deflection techniques [17].
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