ASTEROID IMPACT MONITORING MISSION: MISSION ANALYSIS AND INNOVATIVE STRATEGIES FOR CLOSE PROXIMITY MANEUVERING

Fabio Ferrari, Michèle Lavagna

Department of Aerospace Science and Technology, Politecnico di Milano-Italia

steroid arrival	2022 April 5" – June 16"			
ansfer duration	17 – 20 months			
<i>ı</i> at arrival	0.9 – 1.1 km/s			
Δν to be injected into interplanetary trajectory is provided by the launcher Bi-impulsive maneuver transfer Arrival at binary system few months before DART to study the				

ore impact		

OPERATIONS AT ASTEROID SYSTEM

Heliocentric trajectory during transfer phase

Main issues with small bodies operations:

- Low escape velocity: rebounding after landing may put the lander in an escape trajectory
- Weak and irregular gravity field: highly perturbed environment
- In case of binary systems, the presence of two asteroids lead to excessively inaccurate results when designing trajectories using classical two-body model

The dynamics of a small body in the proximity of the binary system are naturally modelled using the Three-Body Problem formulation

[km]

Heliocentric trajectory during operations at asteroid, close encounter is expected in October 2022

Families of stable manifolds in the Didymos CR3BP. Suitable in-plane and out-of-plane landing trajectories Alternative solutions exist to land MASCOT-2 on the surface of the smallest asteroid, comparing to classical two-body solutions:

- Safer: no need of close fly-bys or hovering, AIM can release MASCOT-2 at a safe distance from the asteroid
- Simpler: from operational point of view, only one maneuver is needed for AIM to deploy MASCOT-2
- Lower risk of rebounding (lower touch-down velocity)

touch-down at secondary asteroid

FINAL HIGHLIGHTS

Three-body formulation is best suited to design trajectories in the proximity of a binary asteroid system, leading to safer, simpler and more effective solutions with respect to the classical two-body approach