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As a part of the NASA Ames effort to characterize Near-Earth Asteroids for
NASA’s new Planetary Defense project, we are modeling the energy required to
disrupt potentially hazardous asteroids and comets with realistic shapes. This
physics-based model will be an input to the other tasks in the ARC project, as
well as to outside projects such as asteroid hazard mitigation strategies.

DISRUPTION

The specific energy of disruption QF, is defined as the minimum energy Ep required
to shatter a body and to remove at least half of its mass, divided by the total mass
M of the original object. This specific disruption energy may be regarded as the sum
of three terms: Q}, = Q%5+ (5 — @F, where D stands for disruption, S for shattering,
G for gravitation, and R for rotation.

SHATTERING

Here Q% is the energy input per unit mass required just to shatter the body.
(% depends on the strength, density, and porosity of the material composing the
body, and may also decrease with its size due to the “weakest link” effect, as shown
in FIGURE 1. Bodies smaller than ~ 5 km in radius are likely to be “strength-
dominated”, while larger ones are likely to be “gravity-dominated”.

Internal Gravity, Self-Energy,
and Disrugtion of Asteroids

POLY- TETRA- OCTA- | DODECA- | ICOSA-

HEDRON | HEDRON | CUBE | HEDRON | HEDRON | HEDRON || SPHERE
FACES 4 6 8 12 20 00
EDGES 6 12 12 30 30 00

VERTICES 4 8 6 20 12 00
FORM
FACTOR 2.3017 2.4453 2.4575 2.4982 2.5027 2.51327

Table 1. Gravitational form factors F' of homogeneous Platonic solids and spheres.
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Fig. 1. A body’s specific disruption energy
@5 as a function of its mean radius.
The solid line represents Q%,

the body’s specific disruption energy
due to its internal strength.

The dashed line represents the body’s

specific gravitational binding energy QF,

while the dotted curve represents

their sum Q% + QF.

GRAVITATIONAL BINDING ENERGY

Q+¢ = Eq/M is the specific self-gravitational binding energy of a body. This
binding energy Eg may be obtained by integrating the object’s internal gravitational
potential ® over its entire mass. Fig. 1 also shows that QF scales as the square of
the object’s mean radius:

Qe = FGpR®, (1)

where G is Newton’s constant of universal gravitation, p is the body’s mean density,
and R is its mean radius, defined as the radius of a sphere with the same volume.
The coefficient F' is a dimensionless “form factor” depending only on the shape of the
object.

Analytic or semi-analytic formulae are not known for most shapes, but any
solid body can be approximated to arbitrary accuracy by a polyhedron of sufficient
complexity. An analytic formula is known for the gravitational potential ¢ of any
homogeneous polyhedron. This enables us to find semi-analytically the self-energy
E¢, specific binding energy (¢, and gravitational form factor F' of any polyhedron.



Knowledge of its internal gravity also assists analysis of its interior stresses and strains.

Fig. 2. Gravitational potential For example, FIGURE 2 contours the gravitational potential @ in the equatorial

plane of the ham-bone-shaped asteroid 216 Kleopatra, assuming that its density p
is uniform. Integrating this @ over Kleopatra’s volume enables us to find Eg, @,
and F ~ 2.05 . For comparison, TABLE 1 lists the gravitational form factors for
a homogeneous sphere and all five Platonic solids. Note how high all of these form
factors are compared to Kleopatra’s.

of ham-bone-shaped asteroid 216
Kleopatra in its equatorial plane,

assuming that its density is uniform.
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Note how the potential is continuous
. As a further comparison, FIGURE 3 contours the gravitational form factor F as a
across its surface, A . o : N .
function of the aspect ratios b/a and ¢/b for ellipsoids with principal radii @ > b > ¢,
while FIGURE 4 does the same for cuboids with sides @ > b > ¢. In either case, form
factors of 2.05 like Kleopatra’s require extreme aspect ratios on the order of 1/4,
roughly consistent with Kleopatra’s shape. This confirms that Kleopatra is weakly

50 100 150 bound gravitationally because of its extreme elongation.

denoted by the white outline.

The scale bar is labeled in m?/s?.
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ENERGY REBATE ROTATION

Finally, in calculating the gravitational binding energy E¢, we have assumed that
the body’s entire mass M is dispersed to infinity. In fact, it suffices to re-arrange
the body into two widely separated spheres, each with half of the mass M of the

original object. This saves energy from Eg and reduces the gravitational form factor Q3 and F both are negative. For example, Kleopatra rotates with a period of 5.385

F by a considerable amount 27{/2/5 ~ 1.583 . For example, the form factor of a hours; this corresponds to a contribution of only -0.049 to the form factor F, leaving
non-rotating sphere would be reduced from 2.513 to 0.930, while that for Kleopatra a total of F' a 2.00.

would be reduced from ~ 2.00 to only ~ 0.620 . By means of this “energy rebate”
and/or rotational energy, it is possible to reduce the gravitational form factor to zero.

The third contribution to a body’s specific disruption energy @7, is its specific
energy of rotation Q#p. Note that the contribution of this term to the form factor
F also scales as the square of the body’s mean radius, but that its contributions to
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Fig. 3. Gravitational form factor I Fig. 4. Gravitational form factor F for cuboids

for ellipsoids of principal radii a > b > c. (rectangular parallelepipeds) of sides a > b > e.



