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As a part of the NASA Ames effort to characterize
Near-Earth Asteroids for NASA’s new Planetary De-
fense project, we are modeling the energy required to
disrupt potentially hazardous asteroids and comets with
realistic shapes. This physics-based model will be an
input to the other tasks in the ARC project, as well as
to outside projects such as asteroid hazard mitigation
strategies.

DISRUPTION
A basic concept for asteroid collisional evolution as
well as somemitigation strategies isQ∗D, the specific en-
ergy of disruption of a comet or asteroid. This is defined
as the minimum energy input ED required to shatter the
body and to remove at least half of its mass, divided by
the total mass M of the original object. This specific
disruption energy may be regarded as the sum of three
terms:

Q∗D = Q∗S +Q∗G −Q∗R, (1)
where D stands for disruption, S for shattering, G for
gravitation, and R for rotation.

SHATTERING
Here Q∗S is the energy input per unit mass required
just to shatter the body into many small pieces. In this
context, the meaning of “many” and “small” depends
on circumstances. For example, many comets and as-
teroids (such as Halley and Itokawa) are “bilobate” -
that is, they resemble two parts stuck together in a kind
of snowman shape. To shatter a “contact binary” com-
posed of two identical spheres, it suffices to break the
two lobes apart at their connection point. Other ob-
jects may already be shattered into thousands of pieces
by non-disruptive impacts, or may be “rubble piles” of
boulders and gravel with no significant cohesion.
However, most asteroids smaller than ∼ 75 meters in
radius may be solid, monolithic bodies. For such ob-
jects, Q∗S depends on the strength, density, and poros-
ity of the material composing the body. Simple models
suggest that Q∗S should be independent of the size of
the object, but more sophisticated reasoning reveals that
Q∗S should decrease with increasing size, based on the
“weakest link” effect. Several arguments suggest that
Q∗S should scale roughly as the inverse square root of
the body’s mean radius. FIGURE 1 (in a similar format
to Fig. 1 of Asphaug et al. 2002) compares the above
strength scaling with the naı̈ve constant-Q∗S model.
As Fig. 1 shows, comets and asteroids smaller than
∼ 5 km in radius are likely to be “strength-dominated”;

Figure 1: A body’s specific disruption energy Q∗

D as a
function of its mean radius. The solid line represents Q∗

S ,
the body’s specific disruption energy due to its internal
strength. The dashed line represents the body’s specific
gravitational binding energy Q∗

G, while the dotted curve
represents their sum Q∗

S +Q∗

G.

that is, their specific shattering energyQ∗S exceeds their
specific gravitational binding energy Q∗G. The reverse
applies to those larger than ∼ 5 km in radius, which
are thus likely to be “gravity-dominated”. Here Q∗G
is defined as EG/M , where EG is the body’s self-
gravitational energy; that is, the energy input it would
take to disperse the entire mass to infinity.

GRAVITATIONAL BINDING ENERGY
This binding energy EG may be obtained by integrat-
ing the object’s internal gravitational potential Φ over
its entire mass:

EG = −1

2

∫
Φ(r)dM(r), (2)

where the mass element dM(r) is just ρ(r)dxdydz,
and ρ(r) is the body’s mass density at interior point r.
The leading factor of 1/2 in formula (2) above com-
pensates for the fact that the integration counts each
pair of interior points twice. Note that by this sign
convention, gravitational potential Φ is negative, so the
self-gravitational energy EG and specific energy Q∗G ≡
EG/M both are positive.
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Fig. 1 also shows that Q∗G scales as the square of the
object’s mean radius:

Q∗G = FGρ̄R̄2, (3)

where G is Newton’s constant of universal gravitation,
ρ̄ is the body’s mean density (its total mass M divided
by its volume V ), and R̄ is its mean radius, defined as
3

√
3V
4π , the radius of a sphere with the same volume V .

The coefficient F may be considered as a dimensionless
“form factor” depending only on the shape of the object.
Analytic or semi-analytic formulae are known for the
self-gravitational energy EG of a homogeneous ellip-
soid (Neutsch 1979), a homogeneous cuboid (rectan-
gular parallelepiped; Waldvogel 1976), and a “duplex”
of two homogeneous spheres stuck together (Dobrovol-
skis and Korycansky, in preparation). Such formulae are
not yet known for the self-energy EG of other figures,
but any solid body such as a comet or asteroid can be
approximated to arbitrary accuracy by a polyhedron of
sufficient complexity. An analytic formula is known for
the gravitational potential Φ of any homogeneous poly-
hedron (e.g. Waldvogel 1979, Werner 1994), but it is
widely believed that the formula for Φ applies only on
the surface or outside of the object (e.g. Werner 1994,
Werner and Scheeres 1997).
We show instead that this formula applies equally well
inside the body. This enables us to find the internal
potential Φ, self-energy EG, specific binding energy
Q∗G, and gravitational form factor F of any polyhedron.
Knowledge of its internal gravity also assists analysis of
its interior stresses and strains (e.g. Dobrovolskis 1982).
For example, FIGURE 2 contours the gravitational po-
tential Φ in the equatorial plane of M-type asteroid 216
Kleopatra, assuming that its density ρ is uniform. Note
that Kleopatra is notoriously shaped like a ham-bone,
as shown by the heavy contour representing its surface
(Ostro et al. 2000, Descamps et al. 2011).
Note also that the gravitational potential Φ remains
continuous as it crosses Kleopatra’s surface from exte-
rior to interior. Integrating this Φ over Kleopatra’s vol-
ume, and multiplying by its mean density ρ̄ ≈ 3.6 kg/�,
gives its gravitational self-energy EG ≈ 1.04 × 1022

Joules. Then dividing again by Kleopatra’s massM ≈
4.64× 1018 kg gives Q∗G ≈ 2250 m2/s2, while formula
(2) above and Kleopatra’s mean radius R̄ ≈ 67.5 km
finally give its gravitational form factor F ≈ 2.05 .
For comparison, Table 1 lists the form factors for a
homogeneous sphere and all five Platonic solids. The
sphere has the highest form factor F = 4π/5 ≈ 2.513,
because the sphere is the figure with the greatest bind-
ing energy for a given mass and volume; but all of the
other shapes have comparable values, because they all
are equidimensional. Even a contact binary composed
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Figure 2: Gravitational potential of ham-bone-shaped as-
teroid 216 Kleopatra in its equatorial plane, assuming that
its density is uniform. Note how the potential is continuous
across its surface, denoted by the heavy contour. The scale
bar is labeled in m2/s2.

POLY- —FORM—
HEDRON -FACES--EDGES--VERTICES- FACTOR
TETRA-
HEDRON 4 6 4 2.3017
CUBE 6 12 8 2.4453
OCTA-
HEDRON 8 12 6 2.4575
DODECA-
HEDRON 12 30 20 2.4982
ICOSA-
HEDRON 20 30 12 2.5027
SPHERE ∞ ∞ ∞ 2.51327

Table 1. Gravitational form factors F of homogeneous
Platonic solids and spheres.

of two identical spheres has F = 17π
15

3
√
4
≈ 2.243 .

Note how high all of these form factors are compared
to Kleopatra’s.
As a further comparison, FIGURE 3 contours the
gravitational form factor F as a function of the aspect
ratios b/a and c/b for ellipsoids with principal radii
a ≥ b ≥ c, while FIGURE 4 does the same for cuboids
with sides a ≥ b ≥ c. Note that for b/a = c/b = 1,
Fig. 3 recovers the value F ≈ 2.513 for a sphere, while
Fig. 4 recovers the value F ≈ 2.445 for a cube. But
in either case, form factors of 2.05 like Kleopatra’s re-
quire extreme aspect ratios on the order of 1/4, roughly
consistent with Kleopatra’s shape. This confirms that
Kleopatra is weakly bound gravitationally because of its
extreme elongation.
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Figure 3: Gravitational form factor F for ellipsoids of
principal radii a ≥ b ≥ c. Contour levels: 1.0, 1.5, 1.8, 2.0,
2.1, 2.2, 2.3, 2.4, and 2.5 .

Figure 4: Gravitational form factor F for cuboids (rect-
angular parallelepipeds) of sides a ≥ b ≥ c, in the same
format as Fig. 3. Contour levels: 1.0, 1.5, 1.8, 2.0, 2.1, 2.2,
2.3, and 2.4 .

ROTATION
The third contribution to a body’s specific disruption
energy Q∗D is its specific energy of rotation Q∗R ≡
ER/M , where its kinetic energy of rotation ER is just
Iω2/2. Here ω is the object’s spin angular speed and I
is its moment of inertia about its axis of rotation. Note

that the contribution of this term to the form factor F
also scales as the square of the body’s mean radius, but
that its contributions to Q∗D and F both are negative.
For example, Kleopatra rotates with a period of 5.385
hours and an angular speed ω = 3.241×10−4 cycles/sec
about its axis of least inertia, with I ≈ 4.78 × 1027 kg
m2. ThenER ≈ 2.51×1020 Joules andQ∗R ≈ 54 m2/s2.
This corresponds to a contribution of only –0.049 to the
form factor F , leaving a total of F ≈ 2.00.

ENERGY REBATE
Finally, in calculating the gravitational binding energy

EG, we have assumed that the body’s entire massM is
dispersed to infinity. In fact, it suffices to re-arrange the
body into two widely separated spheres, each with half
of the massM of the original object. This saves energy
amounting toG[9πρM5]1/3/5 fromEG, corresponding
to a savings of G[9πρM2]1/3/5 from Q∗G, and equiv-
alent to reducing the gravitational form factor F by a
considerable amount 2π 3

√
2/5 ≈ 1.583 .

Thus the form factor of a non-rotating sphere would be
reduced from 2.513 to 0.930, while that for Kleopatra
would be reduced from ∼ 2.00 to only ∼ 0.62 . By
means of this “energy rebate” and/or rotational energy,
it is possible to reduce the gravitational form factor to
zero.
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