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Introduction: One proposed and technically
achievable solution to the task of hazardous asteroid
mitigation is the use of a projectile as a kinetic impactor
to impart a change in velocity on the asteroid and
thereby alter its course. A thorough understanding of
the efficacy of such an approach requires comprehen-
sive analysis of how uncertain system parameters affect
the change in velocity ΔV of the body. This quantity
of interest (QOI) depends on the impact location of
the projectile, the surface properties of the asteroid
as represented by its β parameter, and the surface
topography of the asteroid.

This paper will perform analysis on four known as-
teroid shapes to determine the variations expected from
kinetic impactor deflection attempts due to uncertain-
ties in β and the impact location. The analysis will first
use analytic models to efficiently determine the poste-
rior distribution of the ΔV on the asteroid. Although a
traditional Monte Carlo method could be used to com-
plete this analysis, such an approach is computationally
expensive.

Next, analysis of variance (ANOVA) parameters
called Sobol’ indices will be used to decompose
the variation of the ΔV into the relative individual
contributions by the uncertainties in β and the impact
location. While the calculation of the Sobol’ indices is
dependent on a Monte Carlo simulation and is therefore
computationally expensive, the indices allow for a
global sensitivity analysis useful when considering the
asteroid body as a whole.

The first section of this paper outlines the techniques
used to analytically determine the distribution of the
asteroid’s ΔV . Next, a definition of the Sobol’ in-
dices used for ANOVA is provided in the following sec-
tion. Finally, the results of this analysis are presented
as applied to the asteroids Golevka, 1950DA, Yorp, and
Nereus.

Definition of the Stochastic System: The change
in velocity ΔV ∈ R

3 of an asteroid resulting from the
use of a kinetic impactor is

ΔV = γ[V∞ + (β − 1)(n̂ · V∞)n̂], (1)

where γ is the mass ratio of the impactor and asteroid,
V∞ ∈ R

3 is the velocity of the impactor with respect
to the asteroid, β is a surface material property of the
asteroid, and n̂ ∈ R

3 is the normal vector of the surface
at the point of impact [1]. Thus, the stochastic nature of
the ΔV stems from uncertainties in the β and n̂ terms,

with the values of n̂ defined by the realizations of the
impact location. A two-dimensional local coordinate
system centered at the nominal point of impact is used
to map the deviation in the impact location, as shown
in Figure 1, where the û − ŵ plane is perpendicular to
the incoming velocity V∞. In this study, the uncertain-
ties in the β-parameter and in the u- and w-components
of the impact location are all taken to be independently
and normally distributed. The parameters defining the
Gaussian distributions of the inputs can be found in Ta-
ble 1.

V∞

ŵ
û

Figure 1: Triangular facet shape model for the asteroid
Golevka.

Table 1: Gaussian distributions for uncertain system in-
puts. Rast denotes the average radius of the asteroid body
[2].

Mean, μ Standard Deviation,
σ

β 2 1
6

V∞,u 0 Rast

12

V∞,w 0 Rast

12

The uncertainties in the system inputs are used to de-
termine the distribution of the change in velocity of the
asteroid resulting from impact. While the posterior dis-
tribution can be generated using a Monte Carlo simula-
tion, this paper employs modeling techniques which al-
low for an analytic computation of the probability den-
sity function (pdf) of the ΔV . These techniques, which
are discussed in the following sub-sections, significantly
reduce the total computation time required for analysis.
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Uncertainty in the Impact Location

The first technique used to reduce the computation time
required to generate the pdf of the ΔV relies on the
representation of the asteroid shapes using a triangular
facet shape model such as the example in Figure 2 for
the asteroid Golevka. With this model, the probability
of hitting any given facet can be determined analytically
as a function of the incoming velocity vector, without
the need for Monte Carlo simulations or computation-
ally inefficient ray-tracking methods.

Figure 2: Triangular facet shape model for the asteroid
Golevka.

The computation of the probability of impact with a
given facet for a known incoming velocity vector uses
a projection of the vertices of the triangular facet onto
the û − ŵ plane. Because the impactor can only hit a
facet for which a component of the normal vector is anti-
parallel to V∞, a projection of the normal vector for all
facets onto the V∞ vector can be used as an initial filter.
Those facets which meet this criteria are then projected
onto the û−ŵ plane, and the bivariate impact deviation
pdf defined by the uncertainties in V∞,u and V∞,w (as
provided in Table 1) is then integrated over the result-
ing domain to determine the probability of impact. The
analytic solution for integrating a Gaussian distribution
over a triangular domain can be found in Example 9 of
[3].

In some cases, facets are partially obscured due to
self-shadowing of the asteroid. The method of identify-
ing and accounting for partially obscured facets involves
determining the visibility between all facets comprising
the asteroid, a process which can be completed in ad-
vance to further reduce computation time. If a facet is
visible to any others, the possibility exists for a reduced
probability of hitting that facet. The facet under consid-
eration and all other visible facets are projected onto the
û−ŵ plane, and the separating axis theorem [4] is used
to identify any overlapping or touching triangles in this
plane. For any overlapping triangles, the Sutherland-

Hodgman algorithm [5] is used to solve for the poly-
gon describing the region of overlap. Redefining the
polygon as a collection of triangles using Delaunay tri-
angulation, the sum of the integrals over these smaller
triangles defines the probability over the obscured re-
gion. Figure 3 illustrates the process of solving for the
overlap and the subsequent triangulation for two exam-
ple triangles. The computed probability corresponding
to the overlapping region is subtracted from the original
probability of impacting the facet under consideration,
and the procedure continues for all overlapping trian-
gles. The total probability of impact for a given facet,
then, is the integral over that facet minus the integrals
over all obscured regions.

Uncertainty in β

Within a given facet, the normal vector n̂ remains fixed,
and the ΔV imparted on the asteroid is a linear function
of the asteroid’s β parameter. It follows that any uncer-
tainties in the ΔV are linearly related to the uncertain-
ties in β. For a Guassian distribution in β, therefore, the
ΔV is also Gaussian. Taking the expectation of (1), the
expected ΔV from impacting a facet with the normal
vector n̂ is

E(ΔV ) = γ[V∞ + (E(β)− 1)(n̂ · V∞)n̂]. (2)

Similarly, its variance is given by

V(ΔV ) = γ2[(n̂ · V∞)2n̂n̂T ]V (β). (3)

(2) and (3) provide a computationally efficient method
of determining the distribution in the ΔV for a single
facet, yet it remains to determine a total distribution of
the ΔV for a given incoming velocity vector. The fol-
lowing sub-section proposes a method for calculating
this distribution using the analytic solutions for the ef-
fect of uncertainty in impact location and asteroid sur-
face properties.

Gaussian Mixture Model

With the probability of hitting a facet, as well as the
distribution of ΔV within the facet known, the method
of Gaussian mixtures is well-suited for calculating the
overall distribution of the asteroid’s ΔV for a given in-
coming trajectory. In the Gaussian mixture method, a
weighted sum of N component Gaussian distributions
are used to represent a pdf, such that

p(x) =

N∑
i=1

wig(x|μi,Σi), (4)

where μi and Σi are the mean and covariance matrix of
the component distributions, respectively, and the pdf p
may be non-Gaussian.
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(a) Overlapping regions after projection onto two-
dimensional plane

(b) Delaunay triangulation of the overlapping region

Figure 3: Illustration of the method of determining overlapping regions for two triangular facets.

For the asteroid ΔV , the component Gaussians are
taken to be the ΔV distributions for each facet of the
asteroid, and the weights are taken to be the probability
of hitting the facet for a given ΔV∞. The mean ΔV for
the specific V∞ under consideration is therefore calcu-
lated as the weighted sum of the means,

[E(ΔV )]mix =

N∑
i=1

wi[E(ΔV )]i. (5)

The variance of the ΔV , on the other hand, must ac-
count for both the variance of the component distribu-
tions as well as the spread of the component means
about the combined mean. The variance of the Gaus-
sian sum is defined as

[V(ΔV )]mix =

N∑
i=1

wi[([E(ΔV )]i−[E(ΔV )]mix) ∗

([E(ΔV )]i − [E(ΔV )]mix)
T + [V(ΔV )]i]. (6)

However, because the underlying v∞,u and v∞,w dis-
tributions used to determine the hit probabilities for each
facet are Gaussian and therefore defined over an infinite
domain, there exists a non-zero probability that the im-
pactor will miss the asteroid altogether. To account for
this, the weights used in the summations can normalized
as

w′i =
wi

N∑
i=1

wi

(7)

so that the hit probabilities sum to 1. As a result, (5)
and (6) become the mean and covariance given that the
impactor does in fact hit the asteroid.

By combining the three models outlined above, the
distribution of the ΔV imparted on an asteroid by a
kinetic impactor with a given v∞ can be determined
purely analytically. Repeating the process for a set
of nominal impact locations well-distributed about the
body provides insight into the overall variation of the
expected ΔV for the asteroid.

Analysis of Variance: Analysis of variance
(ANOVA) is a method which seeks to perform global
sensitivity analysis by estimating the contributions
of uncertainties in each input dimension to the total
variance of the QOI [6]. In the context of the kinetic de-
flection of an asteroid, ANOVA provides a measure of
the extent to which uncertainties in the β parameter and
the impact location are reflected in the uncertainty of
the resulting ΔV for a given nominal impact location.
This section proposes the use of a set of parameters
known as the Sobol’ sensitivity indices to break down
the variance of the asteroid ΔV .

Sobol’ Sensitivity Indices

The derivation of the Sobol’ indices is based on the de-
composition of the model y = f(x) into summands of
its input dimensions, such that

f(x1, ..., xk) = f0 +
k∑

i=1

fi(xi)

+
∑

1≤i<j≤k

fij(xi, xj) + · · ·

+ f1,2,...,k(x1, ..., xk) (8)
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In [7], it is shown that the total variance D of the func-
tion f(x) can also be decomposed into the contributions
of each system input in the same way as the original
function in (8), i.e.

D =

k∑
i=1

Di +
∑

1≤i<j≤k

Dij + · · ·+D1,2,...,k, (9)

where

Di = V(E(y|xi)),

Dij = V(E(y|xi, xj))−Di −Dj ,

etc., for all correlated terms. The Sobol’ indices are de-
fined as the ratio of the variance in y due to dimension i
to the total variance D, so that the first order indices are
given by

S1
j =

Dj

D
. (10)

Defining

Uj =

∫
E2(y|xj = x̃j)pj(x̃j)dx̃j (11)

the variance due to each input dimension can be ex-
pressed as

V(E(y|xj)) = Uj − E2(y), (12)

and (10) becomes

S1
j =

(Uj − E2(y))
V(y) (13)

Sampling-Based Calculation of the Sobol’ Indices

The computation of the Sobol’ indices as laid out in
[8] requires a Monte Carlo simulation of n independent
samples. In the empirical calculation of the indices, two
sample matrices M1 and M2 of size n × k are gener-
ated,

M1 =

⎛
⎜⎜⎝

x11 x12 · · · x1k

x21 x22 · · · x2k

· · ·
xn1 xn2 · · · xnk

⎞
⎟⎟⎠

M2 =

⎛
⎜⎜⎝

x′11 x′12 · · · x′1k
x′21 x′22 · · · x′2k
· · ·
x′n1 x′n2 · · · x′nk

⎞
⎟⎟⎠

, (14)

where k is the number of random inputs for the system.
The matrices of (14) are referred to as the ”sample” and
”re-sample” matrices. Another set of k matrices Nj is

then generated, in which all elements except xj are ”re-
sampled”, i.e. xj is taken from M1, while the remaining
elements are extracted from M2, resulting in

Nj =

⎛
⎜⎜⎝

x′11 x′12 · · · x1j · · · x′1k
x′21 x′22 · · · x2j · · · x′2k
· · · · · · · · · · · · · · · · · ·
x′n1 x′n2 · · · xnj · · · x′nk

⎞
⎟⎟⎠ (15)

Function evaluations for each row of the matrices in
(14) and 15 are used to calculate estimates of the pa-
rameters in (13), which are defined in [8] as

Ûj =
1

n− 1

n∑
r=1

f(xr1, xr2, ..., xrk)

∗ f(x′r1, x′r2, ..., x′r(j−1), x
′
rj , x

′
r(j+1), ..., x

′
rk) (16)

and

Ê2 =
1

n

n∑
r=1

f(xr1, xr2, ..., xrk)

∗ f(x′r1, x′r2, ..., x′rk). (17)

Model Results: In this section, the above models
are applied to the asteroids Golevka, 1950DA, Nereus,
and Yorp in order to examine the relationship between
asteroid shape and variation in the ΔV . For each as-
teroid, the expected changes in velocity are computed
analytically as a function of the nominal impact loca-
tion about the body, while the Sobol’ indices are calcu-
lated by sampling according to the probability of hitting
a facet for the random dimension of the impact location
about the nominal and by sampling from the appropri-
ate Gaussian distribution in β for each realization of the
impact location.

In each case, the V∞ of the impactor is assumed to
coincide with the desired direction of the ΔV for the
asteroid, so the ΔV is projected onto the direction par-
allel to V∞ to determine the effective change in velocity
in the intended direction ΔV||. Further, the ΔV is nor-
malized by the mass fraction and the magnitude of the
V∞ to allow for comparison between asteroids.

Golevka

The statistical models are first applied to the asteroid
Golevka, whose shape model can be found in Figure 4.
Figure 5 depicts the ΔV|| resulting from the impact,
with Figure 5a providing the spatial distribution as a
function of the nominal impact location and Figure 5b
providing a frequency distribution as a function of the
magnitude of the ΔV . The distinctive ridges of the as-
teroid shape are easily identifiable in Figure 5a as re-
gions of lower ΔV . Figure 5b shows that there is sig-
nificant variation in the magnitudes of ΔV|| achieved
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for impact locations about the body, ranging from 1.24
to 1.98 with a mean over the entire body of 1.75. Be-
cause the variance of the component distributions do not
affect the mean of a Gaussian mixture (see (5)), the dis-
tribution of the expected ΔV|| in Figure 5 can be at-
tributed entirely to the topography and impact location.
The 37% variation suggests, then, that the shape of the
body can have a substantial influence on the effective-
ness of a kinetic impactor.

Figure 4: Triangular facet shape model for the asteroid
Golevka.

Figure 6 shows the convergence of the first order
Sobol’ indices with increasing sample size for the par-
allel and perpendicular components of the ΔV , as well
as its magnitude, for a single V∞. For each sample
size, 100 independent sample sets were used to gener-
ate the mean and variance of the realization of the in-
dices. While the means of the indices are apparently
independent of sample size, the variances indicate sta-
tistical convergence with increasing n. The convergence
characteristics for all four asteroids were found to be
very similar to those found in Figure 6, so a sample size
of 1e6 was selected for subsequent analysis for all aster-
oids under consideration and the convergence plots have
been omitted for the remaining asteroids..

The mean values in the plots to the left in Figure 6
show that the sum of the relative effects of β and the
impact location is very close to one, implying that there
is little to no correlated effect of the random inputs on
the change in velocity. This also indicates that the S1

β

indices are complements to S1
uw indices. Consequently,

nearly complete information on the relative importance
of the system inputs can be achieved by examining only
one set of indices, allowing the number of function eval-
uations required for generating the indices for this appli-
cation to be cut from n(k + 2) to n(k + 1) if so desired

and if the slight reduction in accuracy is deemed accept-
able.

Figure 7 shows the first order Sobol’ indices for ΔV||
as a function of the nominal impact location about
Golevka for a sample size of n = 1e6. It is readily
evident from the plots that the relative effects of the un-
certainty in β portrayed in Figure 7a are complementary
to those of the location uncertainty given in Figure 7b,
consistent with the conclusions drawn from Figure 6.
Therefore, only the set of S1

β indices will be included
for the remainder of the results.

The S1
β indices in Figure 7a are also somewhat remi-

niscent of the results in Figure 5a above, easily mapped
to the irregularities found in the asteroid shape model.
This is a logical result, as for smooth regions of the as-
teroid body, the impacted facets are predominantly per-
pendicular to the incoming velocity vector despite any
deviations in the impact location. Since β acts anti-
parallel to the facet normal, it also acts predominantly
along the direction of V∞ when n̂ · V∞ is close to 1.
Therefore, the smooth regions on the asteroid lead to the
high values of the Sobol’ indices indicated by the red ar-
eas in Figure 7a. Conversely, the blue areas, which rep-
resent low values of S1

β , correspond to regions of the as-
teroid in which a slight deviation in the impact location
can lead to large changes in the normal vector, which in
turn dominates the magnitude of the resulting ΔV||.

1950DA

Figure 8 provides the shape model for the asteroid
1950DA, which by examination is more nearly spher-
ical than Golevka. The relative lack of irregularities in
the shape of 1950DA produces two major differences
when compared to Golevka. First, Figure 9b shows
that the distribution of ΔV|| ranges only from 1.54 to
1.99, smaller than the range covered by the distribution
in ΔV|| for Golevka. Further, a larger majority of the re-
sults are concentrated at higher values of ΔV|| than was
seen in the previous case, resulting in a slightly higher
mean ΔV|| of 1.87 over the body. Despite these dif-
ferences, the magnitude varies by about 23% over the
body, suggesting that the ΔV|| is still sensitive to im-
pact location and asteroid topography for 1950DA with
the greatest losses occurring about the asteroid’s equa-
tor.

The second effect of the differences in topography is
evident in Figure 10, which indicates that the variation
in ΔV|| is much more predominantly dependent on un-
certainties in β than was the case for Golevka. Almost
all regions outside of the equator have indices S1

β > 0.5,
indicating that these areas are more sensitive to uncer-
tainties in β than they are to uncertainties in the impact
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Figure 5: Variations in ΔV|| due to uncertainties in the β parameter of the asteroid Golevka and in the impact
location of the kinetic deflector
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Figure 6: Mean and variance of the realizations of the first order Sobol’ indices S1
β and S1

uw for 100 independent
sample sets over a range of sample sizes n

location. The high dependence on β is a result of the
more gradual curvature of the body in these regions.

Yorp

Figure 11 shows that the shape of the asteroid Yorp is
fairly similar to that of 1950DA, and this similarity is
reflected in the distribution of ΔV||. In fact, the range of
values seen for the ΔV|| of Yorp, at 1.54-1.99, is nearly
identical to the range seen for 1950DA. The overall dis-

tribution of Yorp, though, is slightly less skewed toward
the larger magnitudes, for a slightly lower mean of 1.85.

As in the previous two asteroids, the plot of the S1
β

indices for Yorp depicted in Figure 13 is qualitatively
similar to that of its variation in ΔV||. One band in the
higher latitudes, corresponding to the protrusions visi-
ble in the shape model of Figure 11, as well as a smaller
band in the lower latitudes, being dominated by uncer-
tainty in the impact position, while the remainder of the
asteroid is primarily affected by uncertainties in β.
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Figure 7: First order Sobol’ indices for ΔV|| for nominal impact locations across the surface of the asteroid
1950DA
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Figure 9: Variations in ΔV|| due to uncertainties in the β parameter of the asteroid 1950DA and in the impact
location of the kinetic deflector

Nereus

The last asteroid considered in this study is Nereus,
which is depicted in Figure 14. Although Nereus is
more oblong than either 1950DA or Yorp, the range of
ΔV|| is the same as the range seen for these other two.
The distribution in Figure 15b, however, is even less
skewed than that of Yorp, with a mean over the body
of Nereus of 1.82. In the spatial distribution of the ΔV||
provided in Figure 15a, the long smooth sides of this as-
teroid correspond to regions of higher ΔV||, while the
narrow ends correspond to drops in the magnitude. This
is consistent with what was seen for all three of the other
asteroids regarding the rate of change in the surface to-
pography.

Figure 16 shows that the uncertainty in the distribu-
tion of the ΔV|| for Nereus is again more sensitive to
variations in the β parameter about most of the body,
leaving Golevka as the only one of the four asteroids to
be primarily impacted by uncertainty in the impact loca-
tion over a sizable portion of its surface. Thus it can be
concluded that the relative influence of the uncertain in-
put parameters is dependent not on the general shape of
the asteroid, but more specifically on the presence of lo-
calized irregularities about the body, such as the ridges
found on Golevka.

Conclusion: The distribution of the ΔV resulting
from the kinetic deflection of an asteroid can be effi-
ciently determined using an analytic mapping of the un-
certainty in the β parameter of the asteroid and in the
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Figure 12: Variations in ΔV|| due to uncertainties in the β parameter of the asteroid Yorp and in the impact
location of the kinetic deflector
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Figure 15: Variations in ΔV|| due to uncertainties in the β parameter of the asteroid Nereus and in the impact
location of the kinetic deflector

two-dimensional impact location. Using this technique,
the deflection ΔV is found to be highly dependent on
the topography of the asteroid body under considera-
tion. Asteroids with highly irregular shapes are more
susceptible to variations in ΔV||. Of the four asteroids
considered in this study, 1950DA, Yorp, and Nereus all
produced variations in the realized ΔV of about 23%,
while Golevka resulted in variations as high as 37%.

Sobol’ indices can then be used to decompose the
computed variations in ΔV for a given V∞ into the rel-
ative contributions by each of the system parameters.
These indices show that smooth regions of the asteroid
surfaces are primarily dependent on the uncertainties in
β. On the other hand, uncertainties in the impact lo-
cation were more influential for irregularly shaped por-

tions of the asteroid, providing a loose correlation be-
tween regions with a high dependence on impact loca-
tion uncertainty and those with greater variations in the
actual ΔV||. While the solution of the indices is de-
pendent on a computationally expensive Monte Carlo
simulation, they are useful in identifying where to focus
efforts in terms of reducing the uncertainty in system pa-
rameters in order to achieve the greatest returns in terms
of reducing uncertainty in the ΔV .
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Figure 8: Triangular facet shape model for the asteroid
1950DA.
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Figure 10: S1
β for ΔV|| for nominal impact locations

across the surface of the asteroid 1950DA.
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Figure 11: Triangular facet shape model for the asteroid
Yorp.
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Figure 13: S1
β for ΔV|| for nominal impact locations

across the surface of the asteroid Yorp.
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Figure 14: Triangular facet shape model for the asteroid
Nereus.
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Figure 16: S1
β for ΔV|| for nominal impact locations

across the surface of the asteroid Nereus.


