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ABSTRACT 
 

In the framework of reserch ac�vi�es of the INFN Astropar�cle Physics Commi�ee (CSN2) and INFN Technology Research Commi�ee (CSN5)  and as part of the Affilia�on of INFN to NASA-SSERVI (Solar System Explora�on Research 
Virtual Ins�tute, h�p://sservi.nasa.gov), we are studying the feasibility of laser-marking NEOs (Near Earth Objects) by the deployment of Laser Retroreflector Arrays (LRAs) specially designed to support laser tracking of NEOs and con-
tribute to SSA/SST (Space Situa�onal Awareness and Space Surveillance and Tracking). LRAs are very useful to study the internal NEO geophysics and dynamics, as it is done, for example, on a planetary-body scale with Apollo/
Lunokhod LRAs on the Moon, ad as it will be done by AIM (Asteroid Inves�ga�on Mission). 
 
We are designing NEO LRA markers for: 

Landing missions of the type of ROSETTA, HAYABUSA-2 and OSIRIS-REX. These reflectors would support laser tracking by Moon, Mars, Jupiter, Saturn orbiters equipped with lasercomm payloads that can also perform �me-of-flight 
laser ranging, as recently demonstrated by NASA’s LADEE (Lunar Atmosphere and Dust Environment Explorer ) mission. This lasercomm infrastructure for the whole solar system is one of the primary goals of the newly created 
“Op�cal Communica�ons Division” inside the NASA Space Communica�ons and Naviga�on (SCaN) program within HEOMD. 

Asteroid retrieval/redirect missions, which might deliver asteroids in cislunar, and/or Earth-Moon Lagrangian points. These would exploit laser al�metry, mapping of asteroids, laser ranging (�me-of-flight) from orbit via lasercomm, 
à la LLCD (Lunar Laser Communica�ons Demonstra�on) on LADEE, and by LLR-capable sta�ons of the Interna�onal Laser Ranging Service (ILRS) if the asteroid will come in the vicinity of the Earth. The la�er sta�ons include: APOL-
LO (Apache Point Observatory Lunar Laser ranging Opera�on) in the USA, GRASSE in France, ASI-MLRO (Matera Laser Ranging Observatory) in Italy. 

 
The study includes LRA models already developed for other des�na�ons (Moon, Mars, airless moons), as well as their evolu�ons and adapta�ons to NEOs. Some of LRA models have been (or will soon be) characterized at the SCF_Lab 
(h�p://www.lnf.infn.it/esperimen�/etrusco/), a space test facility dedicated to laser retroreflectors, located at INFN-LNF, Frasca�, Italy (across the street from ESA-ESRIN). Modeling of LRA op�cal specifica�ons, deployment and 
tracking parameters must be done ad-hoc for NEOs, and is a new realm of applica�on of the geode�c techniques of LLR and SLR. 

SCF_Lab & INRRI Technical Descrip�on 
The nominal overall design of INRRI is characterized in depth at the unique SCF_Lab (Satellite/lunar/GNSS laser ran-
ging  al�metry and cube-microsat Characteriza�on Facili�es Laboratory). Poten�al LRA performance deficiency or de-
via�on from nominal are iden�fied thanks to the diagnos�c/verifica�on provided by the so-called “SCF-Test”, a highly 
specialized thermal-op�cal vacuum test in space condi�ons accurately simulated in the laboratory, that has been uni-
quely developed at the SCF_Lab in the last years of R&D by INFN, also with the co-funding of ASI. The fabrica�on, test 
and verifica�on/calibra�on plan is en�rely carried out at INFN-LNF, in the framework of the SCF_Lab, which is a per-
manent LNF infrastructure devoted to laser retroreflectors for scien�fic, technological research and industrial services. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

As an example, we report that an INRRI prototype has been be designed for lunar applica�ons  and realized to guaran-
tee the sufficient intensity for the ranging measurement at near-Infrared and Infrared lasers used for lasercomm, laser 
al�metry, as well as at standard laser ranging wavelengths (532 nm). Measurements of the op�cal performance can be 
performed on the exis�ng op�cal table, equipped with a green laser, and on an upgraded op�cal table able to measure 
FFDP (Far Field Diffrac�on Pa�ern) at infrared wavelength (namely 1064 nm and 1550 nm). 

Assuming an al�tude of a few hundred km of the laser-equipped orbiter, the relevant OCS (lidar Op�cal Cross Sec�on)  
for INRRI detec�on is around 11 microrad. In our case, this is an OCS ~0.16-0.55 million m² (for 1064 nm and 532 nm 
respec�vely) , which is a laser return signal significantly larger than the low-threshold detectability of current/past la-
ser al�meters of NASA missions, and only a li�le larger than the full-scale receiver value.  

Schematic view of SCF cryostat with IR thermograms of CCRs under test 

Advanced retro-reflectors models on display: the LAser GEOdynamics Satellite (LAGEOS) Sector (on loan from 
NASA-GSFC; larger sphere in image) and the laser-ranged test mass to test 1/r2 in deep space (from an INFN-ASI 
study for a JPL mission concept; smaller sphere in image). Photo Credit: SCF_Lab/ Simone Dell’Agnello/ INFN   

 

 INRRI-D & INRRI-S 

We have designed LRA op�ons in such a way to be observed by lasers and gua-
rantee sufficient light return from very wide viewing angles, because their po-
si�on/orienta�on a�er the deployment could not be certain (see PHILAE’s ex-
perience). 

 

Our studies led to the design of INRRI-D(isc) (on the le�) and INRRI-S(phere) 
(on the right). The baseline INRRI-D consists of two INRRIs specularly �ghtened 
to each other, while INRRI-S has a new own design, that guarantees an omnidi-
rec�onal response to lasers, at the cost of some more mass and some extra 
cost, since it counts 8 CCRs more than INRRI-D. These models (INRRI, INRRI-D 
or INRRI-S) are different op�ons to choose from depending on the specific mis-
sion and the details of its deployment on the targeted NEO. INRRI-D LRA, equipped with sixteen CCRs. Diameter is about 

1.5 x 2 inches; total mass is about 50gr 

INRRI-S LRA, equipped with twenty four  CCRs. Diameter is 
about 2 inches; total mass is about 65gr 

 

INRRI LRA, equipped with eight CCRs. Diameter is about 2 
inches; total mass is about 30 gr  

LRA for NEOs: INRRI 
INRRI (INstrument for landing Roving laser Retroreflector Inves�ga�on) is a laser retroreflector micropayload of about 30 gr weight and diameter of about 2 in-
ches. It will be laser tracked by orbiters capable of laser ranging and/or  laser al�metry and/or laser communica�on . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INRRI is developed and characterized at the SCF_Lab to determine landing accuracy, rover 
posi�oning during explora�on and planetary/Moon’s surface georeferencing, this device is 
a passive, laser wavelength independent, long-lived reference point. INRRI will also enable 
the performance of full-column measurement of Mars atmospheric trace species. De-
ployment of three or more LRA of the INRRIs on an asteroid will allow for triangula�ons by 
orbiters. The added value of INRRI is its low mass, compact size, zero maintenance and its 
usefulness for virtually decades. 

INRRI will also support laser and quantum communica�ons. This will be possible also be-
cause the INRRI laser retroreflectors will be metal back-coated and, therefore, will not 
change the photon polariza�on. Laser communica�on tecnology is one of the key technical 
innova�ons in space missions for the future; it could enable to exchange huge amount of 
scien�fic data in a reduced �me interval. NASA, with the ac�va�on of a new Op�cal Com-
munica�on Division, is inves�ng strategically on op�cal communica�ons to exchange ex-
plora�on data in a much more efficient way. LRO (Lunar Reconnaissance Orbiter ) first and 
then LADEE missions demonstrated feasibility readiness of such technology for space.  

The conceptual figure below summarizes the laser tracking of INRRI deployed on the 
Moon, Mars, Jupiter/Saturn moons, asteroids or comets. 


