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OBJECTIVES 

NEAR TERM: To apply state-of-the-art entry physics simulation tools (developed for entry capsules) to atmospheric flight of potentially hazardous asteroids (PHAs) 
 

LONG TERM: To develop models/mechanisms for energy deposition into the atmosphere and fragmentation/airbursts of PHAs of various sizes and spectral classes 

ANALYSIS TOOLS 

• TRAJ: In-house 3DoF trajectory simulation code; include mass loss equation 
 

• DPLR: In-house 2D/3D flow simulation code; thermochemical nonequilibrium & variety of 
surface boundary conditions 
 

• NEQAIR: In-house line-by-line spectral code; tangent slab approximation for radiation transport 
 

• FIAT & TITAN: In-house material thermal response codes (1D and 2D) 
 

• MARC: Commercial finite-element analysis code (for structural and thermal-structural analysis)  
 

• OTHER: Numerous small software utilities developed in support of several NASA flight programs 

ANALYSIS COMPLEXITY 

FLIGHT SPACE 

HEMISPHERICAL SHAPE: HEAT TRANSFER & BRIGHTNESS 
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SHAPES AND FRAGMENTATION 

OUTLOOK 

• Traditional analyses in meteor physics rely on spherical shape that “pancakes” for increased 
drag area (equivalent to reduction in ballistic coefficient) 

• Does the shape of the object matter? What is the influence of the shape on the light curve? 
• Is the light curve affected by the number of fragments and/or their arrangement relative to 

each other? 
• Three-dimensional computations performed for spheres, prolate spheroids, and lobed 

geometries – all single body with one axis of symmetry (rotational) 
• Static analyses, i.e., bodies are in fixed locations relative to each other, with the intent of 

determining the influence of shock-shock interactions on aerodynamics (drag and side forces) 
and wake structures 

• Preliminary results shown here are for a velocity of 20 km/s and a stagnation pressure of 30 bar 

• Enhancements to thermodynamic and transport properties to include multiply-ionized species – N2+, N3+, O2+, O3+ – to open up velocity space (V > 20 km/s) 
 

• Improvements to radiation energy transport through the use of Rosseland mean opacity 
 

• Development of process to construct synthetic light curves from high-fidelity solutions; will be tested against light curves for well known bolides 
 

• Material thermal response (ablation and recession) and its coupling to flow solver 
 

• Structural response for flight loads and inclusion of voids and cracks in the structure; brittle fracture perspective 
 

• Several lines of inquiry to test fragmentation hypotheses: (a) mechanical, (b) thermo-mechanical, and (c) thermo-chemical 

• Flight space parameterized by flight velocity, freestream density, and 
object size 

• Trajectory delinked from high-fidelity analysis; predicted heat transfer 
and brightness to be included in trajectory code via scaling laws 

• Current flight space covers: (1) velocity ranging from 12 to 20 km/s, 
stagnation pressure (eq. density) of 0.1 to 300 bar, and hemisphere 
diameters from 1 to 100 m 

• Can replace hemisphere with another shape, and can include the wake 
for estimates of energy deposition 

Pressure contours 1/38-scale Itokawa 
(20 km/s, 30 bar stag. pressure) 

Hemisphere 
of radius R 

SINGLE BODY ANALYSIS – (HEMI)SPHERICAL SHAPE 

ALTERNATE SHAPES AND MULTIPLE BODY ANALYSIS 
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• The heat transfer coefficient reaches a maximum between 35 and 55 km depending on size 
• The energy output in 200-800 nm range appears to reach an asymptotic value 
• Time-varying heat transfer coefficient is incorporated in the trajectory simulation tool - TRAJ  

Velocity: 20 km/s, wavelength: 200–800 nm Velocity: 20 km/s 
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Influence of internal 
gas pressure buildup 

Turbulent convective 
heat flux contours 
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pressure) 

Results of high-fidelity flow computations 
serve as boundary conditions to materials 

and structural/thermal-structural 
simulations 

Stardust,* at ≈13 km/s entry velocity, 
is the “calibration” point for the 
analysis tools listed. All velocities 
greater than 12–13 km/s, especially 
Chelyabinsk at ≈19 km/s, are new 
challenges for high-fidelity entry 
physics simulations. 

*See the special issue of Journal of 
Spacecraft and Rockets, 47(6), 2010. 
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