

IAA Space Debris Committee Meeting

Update on LeoLabs

LeoLabs

Dr. Darren McKnight, Senior Technical Fellow

28 March2022

LeoLabs Value Proposition

- Solving tough, relevant space domain awareness (SDA) challenges
 - ✓ More frequent, high-quality, and globallyderived radar observations provide foundation for enhanced...
 - Launch and early operations awareness and support
 - Responsive space traffic management
 - > Timely, accurate collision risk assessments
 - Patterns of life analysis
 - ➤ Change of state (orbit and stability) awareness
 - Statistical risk and hazard evolution
 - > Space incident investigations
 - Start to catalog sub-10 cm debris in 2022
- LeoLabs capabilities trajectory is steep...

LeoLabs Capabilities Trajectory

Costa Rica Space Radars (S-Band), Costa Rica - Active

Kiwi Space Radars (S-Band), Central Otago, New Zealand - Active

Midland Space Radar (UHF), Midland Texas - Active

Poker Flat Incoherent Scatter Radar (UHF), Fairbanks Alaska - Active

- Operating 6 radars in 4 locations incl. Southern Hemisphere
 - ✓ Will add 6-8 more radars by the end of 2022
 - Drastically improve accuracy and timeliness
 - Goal to develop ability to update every object every orbit
 - ✓ Start cataloging sub-10 cm debris
- Used operationally by SpaceX, OneWeb,NOAA, Maxar, and others
 - ✓ Over 60% of operational satellites in LEO

Azores framework -> Operational by June

LeoLabs System Metrics

Full transparency on LeoLabs system speed, accuracy, and quantity of data

Latency

Time from when an object passes over a LeoLabs radar to when its state vector is available on the platform. Median value taken from the past 30 days.

Total: 6 minutes

Launch and Early Orbit Operations (LEOP)

S L A B S

Provided object track and characterization for 32 SpaceX launches \rightarrow +1750 satellites

Conjunctions – 30DEC2021 to 5JAN2022: $PC > 10^{-4}$

Monitor, Characterize, and Inform

- Threatening/Confusing Behaviors
 - ✓ Release of secondary small spacecraft and objects
 - ✓ Rendezvous and proximity operations (RPO)
 - ✓ Swarm and micro constellation operations
 - ✓ Unwarned maneuvers or perturbations

Haiyang-2D Launch 19 May – first pass – 4 object detection

Yaogan-31D/E/F triplets

New Capability Better Characterize "Spawning"

- On 6 October 2021, there was a deployment from the ISS
- LeoLabs' search pipeline at KSR2 picked it up – found after the fact
- Detection plot and the ISS tracklet plot shown to the right
- Can see that there are some detections at a slightly lower orbit than the ISS

SCHEDULED OBJECT: Catalog Number: L72; NORAD ID: 25544 Instrument: KSR2 Beams: [36833, 36868]; Start: 2021-10-06 13:34:35

Identified Four Objects

- Doppler measurements were key to distinguishing the three closelyspaced tracklets from each other
 - ✓ High fidelity doppler is part of our "secret sauce"
 - ✓ Most SSA radars do not acquire doppler explicitly or accurately
 - Some do not even know how to use...
 - ✓ The Space Fence's doppler is not as good as LeoLabs' (as per third party assessment – Omitron)
- Three 1U cubesats deployed followed later by fourth object
 - ✓ Without high quality doppler, the first three objects would not have been resolved so quickly

CHEDULED OBJECT: Catalog Number: L72; NORAD ID: 25544 Instrument: KSR2 leams: [36833, 36868]; Start: 2021-10-06 13:34:35; Cluster 0

LeoLabs Going Beyond LEO...

Geosynchronous Object Tracking Proof of Concept Demo

Demonstrates Viability of LeoLabs Approach to 2-D Modular Phased Array

- Using LeoLabs Costa Rica 1-D radar, we successfully tracked GOES-14 using 1 minute coherent integrations.
- Confirmation of link budget for long integrations
- Demonstration of phase stability and control needed for long duration coherent integration

GOES-14; Catalog Number: L10095; NORAD ID: 35491 Instrument: CRSR1 Beam: 59846; Az: 241.55; El: 64.92; Start: 2021-05-13 15:40:29.820000

Cosmos 1408 Response

- First Gabbard within 24 hours →
- Used LEOP mode initially →
 - ✓ Transitioned to new observation mode
- Value-added analysis
 - ✓ Content and context!
 - ✓ Double PC in most of LEO
 - √ Physics is great equalizer
 - ✓ Apply breakup models
 - ✓ RCS to mass conversions

C1408 Debris Cloud Already in Top Three!!! (January 2022)

- Fengyun 1C

 √~#2800
- Cosmos 1408

 √~#1,500
- Cosmos 2251 √~#1,100
- Altitude and mechanism of breakup both matter...

Cosmos 1408: Lower and Fewer Fragments/Mass...

Statistical Risk Assessment

Asking the Right Questions...

- LeoLabs radar and cloud-based computational engine provides data in near-real-time to support current collision risk and understanding of space system behavior at a higher cadence, precision, and accuracy than ever before...
- This also creates a rich data base that powers unique insights into a mapping of low Earth orbit
 - ✓ Catalyzing a new industry of "space realtors"...??? Location, location, location!
 - ✓ Capturing temporal, spatial, and national trends
 - ✓ Realize a deep awareness of the situation not just an object count...

This is what a real space traffic management system should provide!

PC (Catalog) = Collision Avoidance Burden

Mass is Distributed Non-Uniformly in LEO LEO

Data as of 30 June 2021

LEO Collision Risk Continuum

Six regions (I to VI) formed to group conjunctions by risk

= equal risk contours

(LCRC)

- ~800k conjunctions with PC > 1E-6 from 1JUL20 – 30 Jun21
 - ✓ OPL-ALL = STM
 - ✓ DEB-DEB = SDM
- Plot probability of collision versus consequence (i.e., debris-generating potential)
- Highlights debris-generating potential reduction by STM & SDM
 - ✓ Look at space via a risk aperture; not driven by Space News headlines about "m^%*constellations"

Taking the Heartbeat of LEO...

SDM vs STM...

- Risk = PC x consequence
- Higher risk highlights concerns for future debris generation
 - ✓ Clusters of dead objects > constellations of smallsats
- Lower risk "haze" represents fragment collision risk and hints at associated missionterminating risk from lethal nontrackable (LNT) debris
 - ✓ LNT likely peaks at ~830km, similar to debris-generating potential peak

Use Millions of "Near Misses" for Future Events

Now Consider Lethal Nontrackable (LNT) Objects (LNT numbers derived from MASTER)

LeoLabs is a Full-Service Space Safety Company LEO Kinetic Space Safety Workshop...

- Co-sponsored by LeoLabs, ClearSpace (Swiss ADR company), AXA XL (French space insurance company), EPFL, and Secure World Foundation
- Three-part activity
 - 1. Community polling about stakeholder motivations and space safety activities analysis (i.e., rate by cost, benefit, maturity, and resistance)
 - 2. Hybrid workshop: 4-5 May in Switzerland
 - 3. Issuance of position paper from 12-person international planning committee on space safety activity prioritization
- Focus is on changing behavior to improve safety of all satellites operating in LEO

