

Synthesis of the

3rd European Workshop on Debris Modeling and Remediation Paris, 16 to 18 June 2014

Christophe BONNAL

Christophe.bonnal@cnes.fr

IAA Space Debris Committee Toronto, 27 september 2014

■ Workshop over 2.5 days, held in CNES-HQ, Paris:

- ◆ Program Committee: NASA, JAXA, Roscosmos, DLR, CNES
- ◆ 131 participants coming from 15 countries (inc. Korea, Ukraine, Russia, Singapore...)
- ◆ Good distribution among industrials labs agencies academics + 13 independents
- ◆ 56 interventions: 46 oral presentations + 10 posters
- ◆ Proceedings available, of course, just ask...

■ 2 new thematic compared to previous editions 2010 and 2012

- Modeling: understanding of differences between models
- Small debris: laser cleaning

Origine of participants

■ Theme #1: Modeling

- Status by J.C. Liou (NASA)
 - Increase of mass in orbit

 - Justification of the modeling hypotheses
 - Discussions concerning presentation of results
- MEDEE by B.Revelin (CNES)
 - Sensitivity of parameters:
 - Fragmentation model
 - Solar activity
 - Compliance to EOL measures
 - Additional activities are require prior to conclusion
- Selection of debris to retrieve by M. Zemoura from University of Kyushu
 - 3 scenario of debris retrieval
 - Results often surprising (Monte Carlo effect?)
- ◆ Revue of uncertainties by C. Pardini from University of Pisa
 - Critical analysis of the energy threshold leading to "catastrophic collision"
 - Analysis of the collision model, of traffic model, end of life rules, solar activity...
- Detailed analysis of atmospheric modeling by L. Deleflie IMCCE (+ CNES)
 - Critical comparison of the various models with applications
- Comparison of evolution models by J. Beck from University of Southampton
 - Robustness of results as a function of simulation date

■ Theme #2: High-level system considerations

- Synthesis of the ADR actions led in CNES by M.C. Desjean (CNES)
 - Revue of internal, industrial and academic studies these last years
 - Synthetic presentation of the results from Airbus DS and TAS + sub-co
 - Identification of technologies to be analyzed, precautionary principle
- Status of the e.Deorbit project by T. Soares (ESA)
 - Slice #4 of the Cleanspace initiative (15 à 20 M€)
 - Collection of multi-purpose technologies (satellite servicing, repair, orbital operations) enabling the potential deorbiting of Envisat by 2021
 - Two main system options: net or tentacles capture
 - Numerous complementary tasks (15 contracts in parallel?)
- Status of the Japanese activities by S. Kawamoto (JAXA)
 - Description of a reference scenario based on Electro Dynamic Tether
 - Details relative to non-cooperative rendezvous
 - ◆ EDT demonstration (700 m) during the HTV 6 mission
 - Debris retrieval demonstration planned by 2018
- Revue of "debris remediation activities" in Airbus by A. Pisseloup (ADS)
 - Identification of a potential market and commercial service
 - Numerous contracts from ESA, EU, CNES, DLR
- Description of the RemoveDEBRIS demonstrator by J. Forshaw Surrey Space Center
 - Developed in the frame of EU FP7 program (7 + 6 M€, 9 partners)
 - Numerous ambitious demonstrations at sub-system level (net, harpoon, sail, vision...)
- Concept proposal by US VisSidus start-up, B.Udrea
 - Chaser derived from the RS-34 from PeaceKeeper
 - Very complete presentation, but no Business Plan

■ Theme #3: Selection of debris for Active Debris Removal

- Selection of target for deorbiting by A. Lidtke (University of Southampton)
 - Original approach with evaluation of sensitivities under ESA contract
- Selection of targets y N. Bérend (ONERA)
 - Original methodology and tools by Pareto front, under CNES contract
 - Numerous practical applications
- Selection of targets by A. Rossi (University of Bologna)
 - Proposal of an "index" identifying the interest to deorbit a given target
 - EU and ESA contracts
- Global mission analysis by E. Joffre (Airbus DS)
 - Numerous selection algorithms
 - Identification of global needs, mainly propulsive
- Classification of objects function of their ADR interest by N. Sanchez-Ortiz (Deimos)
 - ESA contract : DRAMA use
- System approaches to deorbit large debris by A. Kaliapin (Yuzhnoye, Ukraine)
 - Description of several solutions often original
 - Proposal to use existing Ukrainan stages

■ Theme #4: Design

- Solutions proposed by Thales Alenia Space C. Billot (TAS)
 - ESA Cleanspace contract; phase A ongoing
 - Description of the complete trade-off following all mission phases
- System feasibility by J. Forshaw (Surrey Space Center)
 - ESA Cleanspace contract with 5 partners
 - Complete system trade-off and description of 2 potential systems
 - Identification of key-technologies and associated risks
- Envisat deorbiting byCranfield University students McLeod-Nolan
 - Nice complete system approach, with identification of risks
- ◆ Proposal of a Solid Propulsion based deorbiting kit by start-up D—Orbit S. Antonetti
 - Very complete description
 - Numerous open points
- Inflatable deorbiting system by B. Rasse (Airbus DS)
 - CNES contract for application on satellite Microscope
 - Very complete qualification status
 - Identification of future improvements for application to other missions

■ Theme #5: Laser Orbital Removal

- Conclusions of the EU Cleanspace project by C. Jacquelard (CILAS + Airbus DS + DLR)
 - Deorbiting of small debris ≈ 1 cm by laser ablation
 - EU FP7 contract (9 partners, not to be confused with ESA Cleanspace)
 - Ground system: large telescope, large laser
 - Very complete description with some surprising videos
- Space based laser by C. Phipps (Photonics, US)
 - Follow-up of NASA Orion contract (ground based, 1996 2008)
 - Detection over a very large field, then laser 355 nm, 50 Hz, 380 J par pulse 100 ps
 - Very promising and surprising performances
 - Possibility to lower Envisat by 40 km; usable to reduce the risk of "major" collisions
 - Identification of key technologies and associated risks
- ◆ Space based laser proposed by University of Stuttgart + Airbus DS M. Schmitz
 - System approach to determine the target population
 - 1064 nm, 1 kHz, Pulse 372 J, 10 ns
 - Surprising and very promising performances
- Two Posters on the same thematics
- ⇒ Potentially promising subject, to be looked at in more depth

■ Theme #6: Technologies

- Presentation of rendezvous technologies by J. Guo (University of Delft)
- ◆ Design of an innovating net by C. Dupont (Bertin Technologies)
- Use of an existing stage for ADR by E. Esther (NASA MSFC)
 - Concept based on RS-34
 - Probably studied in the frame of Hubble ST deorbiting
- Robotic solutions proposed by G. Hausmann (Kayser-Threde)
 - 3 concepts proposed to deorbit Envisat; ESA contract
 - Tentative de Business Plan proposal
- Original interface concept by G. Palmerini (University of Roma)
- ◆ ADR technologies demonstrator by M. Richard (EPFL)
 - ESA Cleanspace contract, 10 partners
- ◆ Technologies for ADR by A. Chiesa (Aviospace)
 - ESA Cleanspace contract, 10 partners
- Hybrid propulsion for deorbiting by F. Maggi (University of Milano + 7 partners)
- Russian proposal to deorbit upper stages by V. Trushliakov (Roscosmos)
- Ion beam shepherd technology b J. Cano (Deimos + 4 partners)
 - 50 M€ demonstration identified by ESA

■ Theme #7: GNC

- Controllability of the chaser + tether + debris assembly by V. Aslanov (University of Samara)
 - Very complete and mathematically advanced
 - Inclusion of solar panels and residual propellants
 - Identification of the main stability parameters
- Very complete modeling of the chaser + net + tether + debrisassembly by M. Lavagna (University of Milano)
 - Detailed study of the interfacing and deorbiting phases
 - Analysis of the despin of the debris by ion beam

- ◆ Exhaustive review of the DLR robotic activities by R. Lampariello (DLR)
 - Simulations + experimental validations
 - Very significant test means
 - Status of the DEOS program
 - e.Deorbit contract for ESA
- Very complete presentation of the GMV test means by G. Binet (GMV)
 - Simulation platform in Madrid
 - Android project under ESA contract to capture Proba-V
 - Cobra-Irides project under ESA contract for Prisma-Picard rendezvous, with CNES

■ Theme #8: Policy, Economic, and Legal Aspects of Orbital Debris Removal

- Very complete presentation of the current compliance to mitigation rules, by H. Krag (ESOC)
 - ◆ 40% satellites and 70% upper-stages comply, with an objective > 90%
 - No trend for improvement
 - 20% upper stages and ≈ 0% satellites attempt a lifetime reduction maneuver at end of life

- Original economical approach by HP. Schaub (University of Colorado)
- Very "commercial" paper by T. Yasaka (University of Kyushu) and N. Okada (Astroscale, start-up from Singapore)
- Japanese legal presentation, by A. Otsuka (Keio University)
- Legal approach to the process leading to authorize an ADR operation by B. Weeden (Secure World Foundation)
 - Very complete and interesting: any operation can generate problems!
- "Export Control" aspects presented by A. Soucek (ESA)
 - Rich and instructive!

Posters

- Space based telescope to detect small debris (Airbus, AUIB, ESTEC, ESOC)
- Electric propulsion applied to ADR by C. Billot (TAS)
 - CNES contract
 - Two interesting and credible concepts; synergy with other orbital missions
- ◆ Two posters on space based lasers by Polytechnique + CEA
 - ICAN fiber laser original and promising, high efficiency
 - EU FP7 funding
 - Possibility to track small debris
 - Proposal of a demonstration on ISS
- ◆ Electrostatic sail interacting with ionospheric wind by P. Janhunen (University of Helsinki)
 - In-flight demonstration ongoing with EST-1
- "commercial" proposal of an ADR system by Astroscale (Singapore)
- Proposal to despin a debris thanks to electrostatic forces by HP. Schaub (University of Colorado)
- Description of simulation means of DFKI + Bremen University (Germany) aiming at capturing an asteroid or a debris (EU contract, 14 partners)
- Proposal to start some work aiming at adapting French Space Act to allow some ADR operations without controlled deorbiting by Ch. Bonnal & B. Lazare (CNES)

