

International Academy of Astronautics IAA Space Debris Committee September 30th, 2023

Agenda

- 1. IAC Administrative part
 - 1.1. IAA Space Debris Committee
 - 1.2. Lessons learned from Paris 2022
 - 1.3. General statistics concerning Space Debris Symposium A6
 - 1.4. Status of Space Debris Symposium for Baku 2023
 - 1.5. Preparation of Space Debris Symposium for Milano 2024

2. Exchanges

- 2.1. Past events: workshops, conferences, congresses, ...
- 2.2. On the Agenda
- 2.3. General information
- 2.4. Round table Open discussion
- 3. IAA Study Groups
 - 3.1 SG 5.17 IAA Situation Report on Space Debris

1.1 IAA Space Debris Committee

General frame:

- Officially created within IAA in 2012
 - Independent Committee
 - Permanent Committee
 - Attachment to Commission V. Could be independent if it would present any interest
- Actions of the Committee:
 - Position Paper on Orbital Debris in 1993, revised in 2000
 - Position Paper SG 5.1 on Space Debris Mitigation in 2006
 - Position Paper SG 5.5 on Space Debris Remediation in 2013
 - Participation to SG 5.10 on Orbital Debris Removal: Policy, Legal, Political and Economic considerations
 Participation to SG 4.23 on Post-Mission Disposal for Micro and Smaller Satellites: Concepts and Trade Studies
 - Review of the SG 5.15 on Space Traffic Management, finished and published
 - Situation Report Paper 2016 SG 5.14 finished and distributed
 - Situation Report Paper 2019 SG 5.17 on going
 - Numerous presentations (UNCOPUOS, ...)

International Academy of Astronautics

1. IAA Space Debris Committee

Membership:

No need to be member of IAA !

- Members of the IAA A6 Symposium Program Committee (chairs & rapporteurs)
 - ⇒ Note that the IAC Program Committee is exclusively selected among the IAA SDC members
- Members of the Program Committee of other IAA sponsored conferences with Space Debris concerns
- Members of Space Debris related working groups (IADC, UNCOPUOS, COSPAR, ISO ...)
- Academics, Labs, Universities, Industrials... working on the topic

However, it is requested to be "active":

- Participation to the meetings
- Debriefing of activities during the meetings
- Cross information with other members
- Contribution to studies and reports
- To see the work which is done, visit our web page

https://iaaspace.org/about/permanent-committees/#SA-PERMCspacedebris

Two meetings per year:

- One during IAC ⇒ Includes the status of the sessions, workshops, round tables... of the week
- One during IAC March Meeting Includes the pre-selection of the abstracts for the following IAC

International Academy of Astronautics

1. IAA Space Debris Committee

Current membership:

Agapov Vladimir M Aglietti Guglielmo Agueda Alberto Ailor William H Alary Didier Alby Fernand Anilkumar A.K. Anselmo Luciano Anz-Meador Phillip Auburn John Bastida-Virgili Benjamin Berend Nicolas Bevilacqua Riccardo Brachet Gerard Colombo Camilla Dasgupta Upasana Dolado Perez Juan-Carlos Faucher Pascal Christiansen Eric L Cordelli Emiliano Crowther Richard **Finkleman David** Fitz-Coy Norman G. Flohrer Tim Forshaw Jason Francesconi Alessandro Francillout Laurent Gong Zizheng Grishko Dmitriy Hanada Toshiya Hyde James Howard Diane Jah Moriba K. Kelso T. S.

Kerr Emma **Kibe Seishiro** Kitazawa Yukihito Kim Hae-Dong **Krag Holger** Jankovic Marko Kawamoto Satomi Le May Samantha Lemmens Stijn Letizia Francesca Liou Jer-Chyi Martinez Peter Martinot Vincent Marzioli Paolo Masson-Zwaan Tanja L. McKnight Darren S. Metz Manuel

Nassisi Annamaria Oltrogge Daniel L. **Opromolla Roberto** Pardini Carmen Piergentili Fabrizio Plattard Serge Rossettini Luca L. Rossi Alessandro Sanchez Ortiz Noelia Santoni Fabio Schaefer Frank Schildknecht Thomas Shen Lin Siminski Jan Singh Balbir Smith Lesley-Jane

Somma Gian Luigi Sorge Marlon E. Spencer David B. Stokes Hedley Seitzer Patrick Traineau Jean-Claude Tung Helen Usovik Igor Yasaka Tetsuo Wiedemann Carsten *Ysole PREVEREAUD Adriano AUTINO Rachit BHATIA Francesco SANTORO*

Chairs & Secretary:

Skinner Mark Bonnal Christophe Omaly Pierre

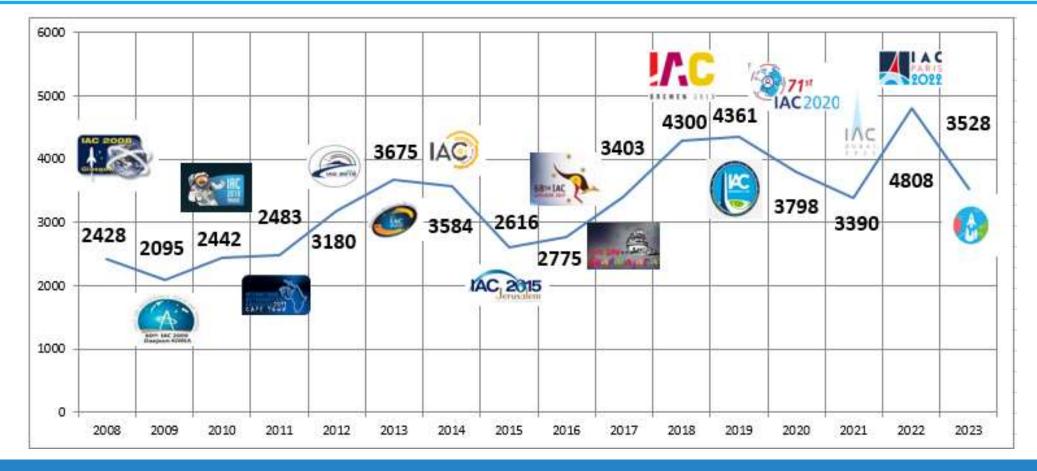
Note:

Members in italics are not yet mentioned on the IAA website... Complex process...

To be removed?

New members?

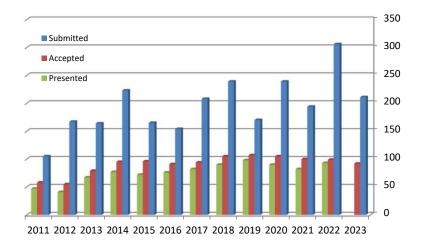
Synthesis: 81 members on the website

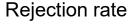

See appendix 1 for today's list of participants

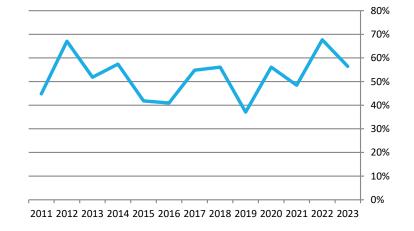
It is reminded that Program Committee (Chairs + Rapporteurs) is selected among members only

1.2 General evolution of IAC

Number of IAC abstracts since 2008

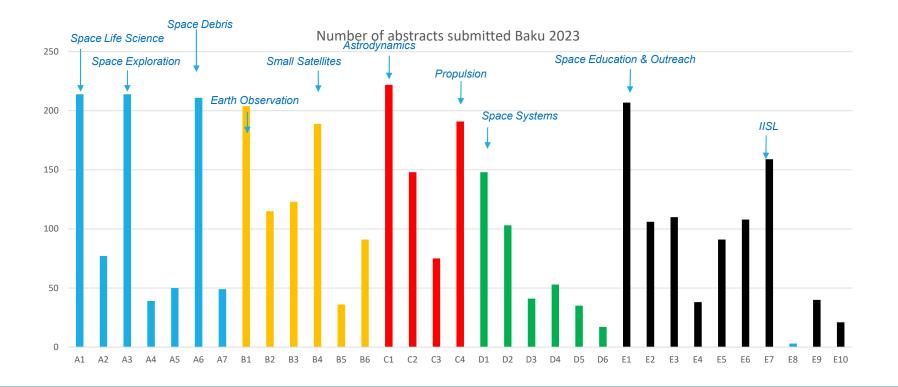


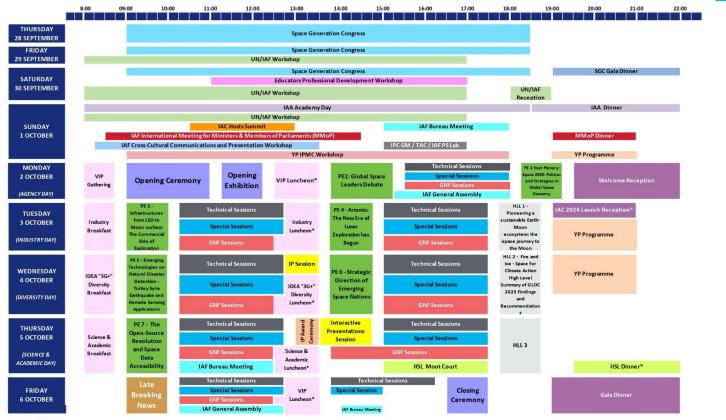



1.3 General statistics concerning A6

Globally healthy symposium:

Average 206 papers submitted every year these last 10 years: large variations (standard deviation = 47.2) Very good rejection rate: average last 10 years $51\% \Rightarrow$ Evolution in 2022 due to the very high number of IPs Very good presentation rate: average (2012-2019) = 81%





211 abstracts submitted to A6 this year

Please Note:

*By invitation only; Pre-Congress events as well as the IISL Moot Court are dedicated to the respective participants

International

Academy of

1.4. Space Debris Symposium for Baku 2023

						•				
Astron	Date	02/10/2023	03/10/2023	03/10/2023	04/10/2023	04/10/2023	05/10/2023	05/10/2023	<mark>06/10/2023</mark>	06/10/2023
9	Time / Room Number	15:15-17:45	10:15-12:45	15:00-17:30	10:15-12:45	15:00-17:30	10:15-12:45	15:00-17:30	10:15-12:45	13:45-16:15
	BCC B3	A3.1	A3.2A	A3.2B	A3.3A	A3.3B	A3.4A	A3.5	A3.4B	A3.2C
	BCC A3	D2.1	D2.3	D2.2	D2.4	D2.5	D2.6	D2.7	D2.8	D2.9/D6.2
	BCC B4	C1.8	C1.9	C1.1	C1.2	C1.3	C1.4	C1.5	C1.6	C1.7
	BCC A6	A6.7	A6.9	A6.4	A6.3	A6.2	A6.5	A6.6	A6.8/E9.1	A6.1
	BCC A7	B3.1	B3.2	B3.3	B3.4/B6.4	B3.5	B3.6/A5.3	B3.7	B3.8	E10.2
	BCC A2	B4.2	B4.1	B4.3	B4.4	B4.5	B4.6B	B4.7	B4.8	B4.6A
	HAC Hall B	E7.1	E7.2	E7.3	E7.4	E7.5	E9.3	E10.1	E7.6/E3.5	E7.7
	BCC A8	C4.1	C4.3	C4.5	C4.2	C4.6	C4.7	C4.8/B4.5A	C4.9	C4.10/C3.5
	BCC A1	C2.1	C2.2	C2.3	C2.4	C2.5	C2.6	C2.7	C2.8	C2.9
	BCC B6	A1.1	A1.2	A1.3	C4.4	A1.4	A1.5	A1.6	A1.7	A1.8
	BCC B7	A2.1	A4.1	A4.2	A2.2	A2.3	A2.4	A2.5	A2.6	A2.7
	HAC Hall A	D1.1	D1.2	D1.3	A5.1	A5.2	D1.4A	D1.4B	D1.5	D1.6
	BCC B1	B1.1	C3.1	B1.2	B1.3	B1.4	B1.5	B1.6	C3.3	C3.4
	BCC Auditorium Balcony	E9.2	E3.1	E3.2	E3.3	E3.4	A7.1	E3.6	A7.2	A7.3
	BCC A4	E5.1	D5.1	E5.2	D5.2	E5.3	D5.3	E5.4	E5.5	E5.6
	BCC B2	B5.1	B2.7	B2.1	B2.2	B2.3	B2.4	B2.5	B2.6	E8.1
	HAC Museum GA	E1.1	E1.2	E1.3	E1.4	E1.5	E1.6	E1.7	B1.7	E1.9
	BCC Balcony C2	D4.1	D4.2	D4.3	D3.1	D3.2A	D4.4	D4.5	D3.2B	D3.3
	BCC A5	E2.1	E2.2	B6.3	E2.4	B5.2	B5.3	B6.1	B6.2	B6.5
	BCC B5	B2.8/GTS.3	D6.1	E2.3/GTS.4	D6.3	E6.5/GTS.1	C3.2	B4.9/GTS.5	D5.4	B3.9/GTS.2
	HAC Balcony 2	A5.4	E6.4	E6.3	E6.2	E4.1	E4.2	E6.1	E4.3	
	ISZ								E1.8	

BCC: Baku Congress Center HAC: Heydar Aliyev Center

Category A: Science A1--> A7 & Exploration

Category C: Technology C1--> C4 Category E: Space E1--> E10 & Society

Category B: Applications & Operations

Category D: Infrastructure D1--> D6

1.4. Space Debris Symposium for Baku 2023 Initial list, as per the website

A6: Space Debris Symposium: Skinner – Bonnal – Omaly

The Symposium will address the complete spectrum of issues associated to space debris, including orbital sustainability and operations in debris dominated environment.

It will cover every aspect of Space Environment Management (SEM) including Mitigation and Remediation measures, Space Surveillance and Tracking (SST), Space Situational Awareness (SSA), Space Traffic Management (STM), including all aspects of measurements, modelling, risk assessment in space and on the ground, re-entry, hypervelocity impacts and protection, mitigation and standards, postmission disposal, remediation, debris removal, Space Surveillance, collision avoidance as well as non-technical topics associated to space debris dominated environment.

A6.1: Space Debris Detection, Tracking and Characterization - SST: Skinner - Agapov- Schildknecht- Piergentili

This session will address every aspect of SST (Space Surveillance and Tracking), advanced ground and space-based measurement techniques, relating processing methods, and results of space debris characterization.

A6.2: Modelling and Risk Analysis: Sorge – Oltrogge – Pardini

This session will address the characterization of the current and future debris population and methods for in-orbit and on-ground risk assessments. The in-orbit analysis will cover collision risk estimates based on statistical population models and deterministic catalogues, and active collision avoidance.

A6.3: Impact-Induced Mission Effects and Risk Assessments: Kitazawa - Gong - Traineau

This session addresses disruptions of spacecraft operations induced by hypervelocity impacts including spacecraft anomalies, perturbation of operations, component failures up to mission loss, and spacecraft fragmentations. It includes risk assessments for impact vulnerability studies and corresponding system tools. Further topics are spacecraft impact protection and shielding studies, laboratory impact experiments, numerical simulations, and on-board diagnostics to characterize impacts such as impact sensors, accelerometers, etc.

1.4. Space Debris Symposium for Baku 2023 Initial list, as per the website

A6.4: Mitigation - Tools, Techniques and Challenges - SEM: Omaly – Kawamoto – Krag (Noelia)

This session will focus on the Mitigation part of the SEM (Space Environment Monitoring), implementation of debris prevention and reduction measures; vehicle passive protection at system level including end of life strategies and tools to verify the efficiency of the implemented measures. The session will also address practical experiences in the planning and verification of measures and issues and lessons learnt in the actual execution of mitigation actions.

A6.5: Post Mission Disposal and Space Debris Removal 1 - SEM: Singh- Opromolla - Francillout - Forshaw

This session will focus on the Remediation part of the SEM, dealing with ADR (Active Debris Removal), JCA (Just in time Collision Avoidance), LDTM (Large Debris Traffic Management) among solutions. It will address post-mission disposal and active removal techniques "ground and space based", review potential solutions and identify implementation difficulties.

A6.6: Post Mission Disposal and Space Debris Removal 2 - SEM: Jankovic – Grishko – Forshaw

This session will focus on the Remediation part of the SEM, dealing with ADR (Active Debris Removal), JCA (Just in time Collision Avoidance), LDTM (Large Debris Traffic Management) among solutions. It will address post-mission disposal and active removal techniques "ground and space based", review potential solutions and Identify implementation difficulties.

A6.7: Operations in Space Debris Environment, Situational Awareness - SSA: Martinot – Kelso – Sanchez-Ortiz-Skinner- Nayyer

This session will address the multiple aspects associated to STM (Space Traffic Management) and SSA (Space Situational Awareness) including safe operations in space dealing with Space Debris, operational observations, orbit determination, catalogue build-up and maintenance, data aggregation from different sources, relevant data exchanges standards and conjunction analyses.

A6.8 / E9.1 (joint with Space Security Committee): Political, Legal, Institutional and Economic Aspects of Space Debris Mitigation and Removal - STM Security

From SDC: Spencer – Masson-Zwaan – Kerr From SSC: Plattard - Soucek Capurso & David

This session will address all non-technical aspects of Operations and Security in a Debris Dominated Environment. This STM session will mainly include the non-technical aspects of space debris mitigation and removal. Political, legal and institutional aspects include role of IADC and UNCOPUOS and other multilateral bodies. Economic issues include insurance, financial incentives and funding for space debris mitigation and removal. The role of international cooperation in addressing these issues will be considered

A6.9: Orbit Determination and Propagation - SST

Siminski Dolado-Perez Marzioli - Cordelli

This session will address every aspect of orbit determination coming from the SST (Space Surveillance and Tracking), related to assessment of raw and derived data accuracy, optical measurements processing and modelling and risk analysis of space debris

A6.IP: Interactive Presentations, Kerr – Letizia – Marzioli – Opromolla – Jankovic – Need Volunteers

Evaluation of presentations:

- On the web site, under "Responsibility area", "2022", "IAC-22/A6/1", "Evaluate presentations" - Same for IP and IPB

			RRENT CONGRESS	IAF DIGITAL LIBRARY	PUBLIC WEBSITE		MY PAPERS							
		Home > IAC-2	2/A6/1 > evaluation >											
		SESSION	EVALUATION FOR	vi										
		A6.1. Space De	ebris Detection, Tracking and (Characterization - SST										
		Date: 22 Septe	ember 2022											
		Time: 13:45												
		SESSION AT	TTENDANCE											
		session	Start	Middle	End									
PAPER	s	2400												
ID	Order	Title		Speaker	Review	Confirmed	Presentation delivered onsite	Manuscript uploaded	Presentation uploaded	Withdrawn	No-Show	Manuscript evaluation	Presentation evaluation	Pre-selected for

First Name	🔻 Last Name 🔻	Poster ID 💌	Publist 🖵	Poster URL 🔻 Title 🔹 Na	🛪 speaker_company 💌	speaker_country
Nijanthan	Vasudevan	80349	VRAI	iac2023-iaf.ipo Active Space Debris Removal with Artificial Intellig A6.	21 Space Generation Adv	United States
Vlekhi	Dhesi	79604	VRAI	iac2023-iaf.ipo Towards In-Orbit Hyperspectral Imaging of Space D A6.	21 Astroscale Ltd	United Kingdom
KaiQi	Cui	76549	VRAI	iac2023-iaf.ipo Improving the method of assessing the potential d A6.		China
Liqiang	Hou	76402	VRAI	iac2023-iaf.ipo Optimal Low Thrust Debris Removal Using a Tether A6.		
Xiaowei	WANG	76376	VRAI	iac2023-iaf.ipo A novel Method of Space Non-cooperative Target (A6.	21 China Academy of Lau	China
Ekaterina	Tverdokhlebova	76123	VRAI	iac2023-iaf.ipo plasma means of combating technogenic debris in A6.	21 TSNIIMASH	Russian Federation
Ricardo	Ferreira	76012	VRAI	iac2023-iaf.ipo Probability of Collision of satellites and space debi A6.	21 FCT-UNL	Portugal
Gaia	Lorenzi	79820	VRAI	iac2023-iaf.ipo Spacecraft reflectance experimental facility for Spa A6.	21 Sapienza University o	Italy
Andreas	Hornig	79444	VRAI	iac2023-iaf.ipo Time-synchronization and accuracy impact on the cA6.	21 AerospaceResearch.ne	Germany
Shaotian	Gao	78715	VRAI	iac2023-iaf.ipo Maneuvering detection of space non-cooperative (A6.	21 Northwestern Polyted	China
Salihat	Haciyeva	79061	VRAI	iac2023-iaf.ipo How to make money from space debris? A6.	21 Azerbaijan State Univ	Azerbaijan
Okchul	Jung	78676	VRAI	iac2023-iaf.ipo Conjunction Assessment of LEO Satellite for Future A6.	21 Korea Aerospace Rese	Korea, Republic of
Pyanet	Marine	78758	VRAI	iac2023-iaf.ipo Towards an all-orbit optical data service provisioni A6.		France
Mathilde	Leuridan	75232	VRAI	iac2023-iaf.ipo A Model for Satellite Collisions A6.	21st IAA SYMPOSIUM ON	Germany
Daniel	Lubián Arenillas	79880	VRAI	iac2023-iaf.ipo The Debris Mitigation Facility for Sustainable Space A6.	21 OKAPI:Orbits GmbH	Germany
osto	Fodde	77482	VRAI	iac2023-iaf.ipo The LASERS Mission Concept for Active Debris Rem A6.	21 University of Strathcly	The Netherlands
Marta	Guimaraes	78441	VRAI		21 Neuraspace	Portugal
Emanuele	Tomassi	77925	VRAI	iac2023-iaf.ipo The Role of Advanced Software Tools in Ensuring S A6.	21 Politecnico di Milano	Italy
Georgy	Shcheglov	77819	VRAI	iac2023-iaf.ipo Feasibility study of loads reduction in process of la A6.		
Zhengyu	Pan	77297	VRAI	iac2023-iaf.ipo Large-scale Rapid Evaluation for the Collision Risk A6.		
Ai	Gao	77191	VRAI	iac2023-iaf.ipo spacecraft components detection method based o A6.		
Fangyuan	Shi	77354	VRAI	iac2023-iaf.ipo Image-based targets tracking for multiple remote sA6.		
Mark A.	Skinner	75761	VRAI	iac2023-iaf.ipo CubeSat Confusion: CubeSat ID via ground-based o A6.	21 The Aerospace Corpo	United States
Eliott	Simon	76035	VRAI	iac2023-iaf.ipo Resident Space Object Classification from Light Cul A6.	21 European Space Agen	Belgium
Luigi	De Maria	76273	VRAI	iac2023-iaf.ipo Numerically Efficient Impulsive and Low-Thrust Co A6.		
João	Funenga	76700	VRAI	iac2023-iaf.ipo finding real-world orbital motion laws from data A6.		Portugal
Klaus	Merz	77054	VRAI	iac2023-iaf.ipo The IOAG Working Group on Sustainability of OperA6.		Germany
Klaus	Merz	78918	VRAI	iac2023-iaf.ipo ESA's collision risk estimation and automat A6.		
João	Catulo	78107	VRAI	iac2023-iaf.ipo Predicting the Probability of Satellite Collisions us A6.	21 Instituto Superior Téc	Portugal
Anisa	Taggart	78346	VRAI	iac2023-iaf.ipo Breaking the Cycle: Novel Capture Mechanisms for A6.		
Emiliano	Cordelli	78859	VRAI	iac2023-iaf.ipo Technologies paving the way toward space debris (A6.		
Dmitrii	Petrov	78876	VRAI	iac2023-iaf.ipo Orbit determination with the help of space-based A6.		
Giacomo	Battaglia	79098	VRAI	iac2023-iaf.ipo A CubeSat-sized in-situ space debris impact sensor A6.		
Cristina	Pérez Hernánde:	79120	VRAI	iac2023-iaf.ipo The EUSST Collision Avoidance Service Ready to Su A6.		
Antonio	D'Anniballe	79136	VRAI	iac2023-iaf.ipo Quantifying Improvements in Debris Risk Analysis A6.		
Jodie	Howlett	79292	VRAI	iac2023-iaf.ipo UK ADR: The UK Space Agency's Active Debi A6.		United Kingdom
Prateesh	Awasthi	80131	VRAI	iac2023-iaf.ipo Stabilization of Tumbling Spacecraft via Continuum A6.		0
Pawel	Nowakowski	80142	VRAI	iac2023-iaf.ipo Engineering Model of the Solid Rocket Motor for D A6.		
Abdikul	Ashurov	80716	VRAI	iac2023-iaf.ipo Creation of a service for monitoring satellite mane A6.		

Interactive Presentations:

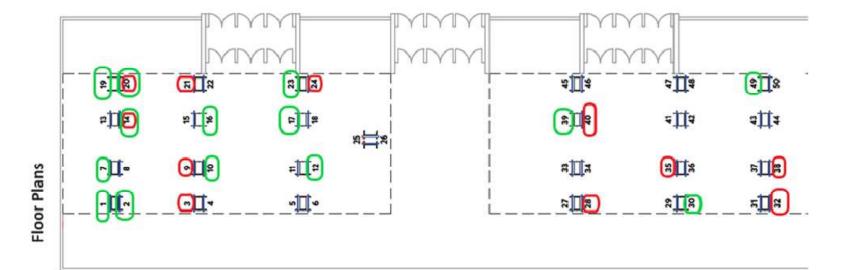
13:00

13:10

13:20

13:30

Chairs


you will find the screen allocation paper number and time schedule. Same color means side by side screens.

We have at max 8 presentations in the same time Wednesday, so it could be nice to be all here for the first slot. Teel me if it is fine for you and if you have some concern and what screen you will chose ③. Thursday 5 October 2023

Scree														
n														
numbe														
r	1	2	7	10	12	14	16	17	19	20	23	30	39	49
13:30							79120		79136				78758	78676
13:40					76123			76035						
13:50				80349	76700									78715
14:00												77297		
			8071											
14:10			6		76376			76402				77191		
14:20		79880		79061	78918	76549								
14:30	76273													
14:40					77054					78441	78859			
14:50														
	Wednes	day 4 Oct	ober 202	23										
	Scree													
	n													
	numbe					1								
	r	3		9 14	20	21	24	2	8 3	32	35	37	38	40

Chairs : 'jean-claude.traineau@orange.fr'; 'thomas.schildknecht@aiub.unibe.ch'; 'noelia.sanchez.ortiz@gmail.com'; 'Holger.Krag@esa.int'; mark.a.skinner@aero.org; 'paolo.marzioli@uniroma1.it'; 'dan@comspoc.com'; 'kitazawa@planeta.sci.isas.jaxa.jp'; 'emiliano.cordelli@esa.int'; 'mahhad.nayyer@gmail.com'

Academy of

1.5. Space Debris Symposium for Milano 2024

IAC	Year	Location	Session 1	Session 2	Session 3	Session 4	Session 5	Session 6	Session 7	Session 8	Session 9	Session 10	Interactive Presentatio ns
67th	2016	Guadalajara	D. Oltrogge [C]	C. Pardini [C]	N. Fitz Coy [C]	H. Krag [C]	S. Kibe [C]	N. Berend [C]	T.S. Kelso [C]	S. Plattard [C]	M. Jah [C]		T. Yasaka
			T. Schildknecht [C]	M. Sorge [C]	F. Schaefer [C]	C. Cazaux [C]	F. Piergentili [C]	L. Innocenti [C]	J-C. Dolado-Perez [C	1	H. Klinkrad [C]		D. McKnight
			V. Agapov [R]	B. Bastida-Virgili [R]	A. Francesconi [R]		F. Santoni [R]	G. Haussmann [R]	C Wiedemann [R]	D. Finkleman [R]			C. Bonnal
68th	2017	Adelaide	F. DiPentino [C]	C. Pardini [C]	F. Schaefer [C]	C. Cazaux [C]	B. Bastida-Virgili [C]	N. Berend [C]	T.S. Kelso [C]	D. McKnight [C]	H. Klinkrad [C]	D. Oltrogge [C]	T. Yasaka
			T. Schildknecht [C]	D. Oltrogge [C]	N. Fitz Coy [C]	D. Finkleman [C]	F. Santoni [C]	L. Innocenti [C]	J-C. Dolado-Perez [C	S. Plattard [C]	M. Jah [C]	L. Rossettini [C]	D. McKnight
			V. Agapov [R]	M. Sorge [R]	A. Francesconi [R]	H. Krag [R]	F. Piergentili [R]	B. Singh [R]	C Wiedemann [R]	A. Soucek [R]	H. Lewis [R]	C. Cazaux [R]	C. Bonnal
59th	2018				N. Fitz Coy [C]	H. Krag [C]	F. Piergentili [C]	N. Berend [C]	C Wiedemann [C]	D. Spencer [C]	S. Kibe [C]	M. Jah [C]	T. Yasaka
			T. Schildknecht [C]		F. Schaefer [C]	P. Omaly [C]	B. Bastida-Virgili [C]	B. Singh [C]	T.S. Kelso [C]	S. Lemay [R]	H. Lewis [C]	Anilkumar [C]	D. McKnight
			V. Agapov [R]	M. Sorge [R]	D. McKnight [R]	Y. Usovik [R]	F. Santoni [R]	L. Rossettini [R]	J-C. Dolado-Perez [F	3]	H. Klinkrad [R]	Kitazawa [R]	C. Bonnal
70th	2019				JC Traineau [C]	H. Krag [C]	F. Santoni [C]	L. Rossettini [C]	C Wiedemann [C]	D. Spencer [C]	H. Klinkrad [C]	U. Dasgupta [C]	T. Yasaka
			T. Schildknecht [C]		M. Jah [C]	S. Kawamoto [C]		E. Kerr [C]	N. Sanchez-Ortiz [C]	S. Lemay [R]	J-C. Dolado-Perez	Y. Usovik [C]	D. McKnight
			V. Agapov [R]	D. Oltrogge [R]	N. Fitz Coy [R]	P. Omaly [R]	L. Francillout [R]	N. Berend [R]	TS. Kelso [R]		F. Piergentili [R]		C. Bonnal
71st	2020			C. Pardini [C]	Z. Gong [C]	S. Kawamoto [C]	B. Singh [C]	J. Auburn [C]	T.S. Kelso [C]	S. Plattard [C]	H. Klinkrad [C]	D. McKnight [C]	T. Yasaka
				D. Oltrogge [C]	E. Kerre [C]	P. Omaly [C]	L. Francillout [C]	N. Berend [C]	N. Sanchez-Ortiz [C]	S. Lemay [C]	J-C. Dolado-Perez		D. McKnight
			V. Agapov [R]	M. Sorge [R]	JC Traineau [R]	H. Krag [R]	R. Opromolla [R]	C. Wiedemann [R]	V. Martinot [R]	A. Soucek [R] D. Spencer [R]	F. Santoni [R]	A. Anilkumar [B]	M. Jankovic
72nd	2021	Dubai	M. Skinner [C]	M. Sorge [C]	D. McKnight [C]	P. Omaly [C]	B. Singh [C]	M. Jankovic [C]	V. Martinot [C]	D. Spencer [C]	H. Klinkrad [C]	V. Agapov [C]	E. Kerr
					Z. Gong [C]		R. Opromolla [C]	C. Wiedemann [C]	T.S. Kelso [C]	T. Masson-Zwaan		H. Tung [C]	S. Lemay
			T. Schildknecht [R]		JC Traineau [R]	H. Krag [B]	L. Francillout [R]	J. Auburn [R]		S. Lemay [R]	J-C. Dolado-Perez		F. Santoni
				• •									R. Opromolla
													M. Jankovic
'3rd	2022	Paris	M. Skinner [C]	M. Sorge [C]	D. McKnight [C]	P. Omaly [C]	B. Singh [C]	M. Jankovic [C]	V. Martinot [C]	D. Spencer [C]	J. Siminski [C]	T. Schildknecht [C]	E. Kerr
					Z. Gong [C]	S. Kawamoto [C]	R. Opromolla [C]	D. Grishko [C]	T.S. Kelso [C]		J-C. Dolado-Perez		F. Letizia
			T. Schildknecht [R]	C. Pardini [R]	JC Traineau [R]	H. Krag [R]	L. Francillout [R]	J. Auburn [R]	N. Sanchez-Ortiz [R]	E. Kerr [R]	P. Marzioli [R]	C. Colombo [R]	F. Santoni
													R. Opromolla
													M. Jankovic
													P. Marzioli
74th	2023			M. Sorge [C]	D. McKnight [C]	P. Omaly [C]	M. Jankovic [C]	M. Jankovic [C]	V. Martinot [C]	D. Spencer [C]	E. Cordelli [C]		E. Kerr
					Z. Gong [C]		R. Opromolla [C]	D. Grishko [C]	T.S. Kelso [C]		J-C. Dolado-Perez	[R]	F. Letizia
			T. Schildknecht [R]	C. Pardini [R]	JC Traineau [R]	C. Colombo [R]	L. Francillout [R]	J. Auburn [R]	N. Sanchez-Ortiz [R]	E. Kerr [R]	P. Marzioli [R]		R. Opromolla
													M. Jankovic
													P. Marzioli

1.5. Space Debris Symposium for Milano 2024 Evolutions of the text – Evolutions of the Chairs & Rapporteurs

A6: Space Debris Symposium: Bonnal – Bevilacqua – Omaly

The Symposium will address the complete spectrum of issues associated to space debris, including orbital sustainability and operations in debris dominated environment.

It will cover every aspect of Space Environment Management (SEM) including Mitigation and Remediation measures, Space Surveillance and Tracking (SST), Space Situational Awareness (SSA), Space Traffic Management (STM), including all aspects of measurements, modelling, risk assessment in space and on the ground, re-entry, hypervelocity impacts and protection, mitigation and standards, postmission disposal, remediation, debris removal, Space Surveillance, collision avoidance as well as non-technical topics associated to space debris dominated environment.

A6.1: Space Debris Detection, Tracking and Characterization - SST: Skinner - Agapov - Schildknecht

This session will address every aspect of SST (Space Surveillance and Tracking), advanced ground and space-based measurement techniques, relating processing methods, and results of space debris characterization.

A6.2: Modelling and Risk Analysis: Sorge - Oltrogge - Pardini

This session will address the characterization of the current and future debris population and methods for in-orbit and on-ground risk assessments. The in-orbit analysis will cover collision risk estimates based on statistical population models and deterministic catalogues, and active collision avoidance.

A6.3: Impact-Induced Mission Effects and Risk Assessments: KITAZAWA - Gong - Prevereaud?

This session addresses disruptions of spacecraft operations induced by hypervelocity impacts including spacecraft anomalies, perturbation of operations, component failures up to mission loss, and spacecraft fragmentations. It includes risk assessments for impact vulnerability studies and corresponding system tools. Further topics are spacecraft impact protection and shielding studies, laboratory impact experiments, numerical simulations, and on-board diagnostics to characterize impacts such as impact sensors, accelerometers, etc.

1.5. Space Debris Symposium for Milano 2024

A6.4: Mitigation - Tools, Techniques and Challenges - SEM: Omaly – Kawamoto – Colombo

This session will focus on the Mitigation part of the SEM (Space Environment Monitoring), implementation of debris prevention and reduction measures; vehicle passive protection at system level including end of life strategies and tools to verify the efficiency of the implemented measures. The session will also address practical experiences in the planning and verification of measures and issues and lessons learnt in the actual execution of mitigation actions.

A6.5: Post Mission Disposal and Space Debris Removal 1 - SEM: Singh – Opromolla – Francillout

This session will focus on the Remediation part of the SEM, dealing with ADR (Active Debris Removal), JCA (Just in time Collision Avoidance), LDTM (Large Debris Traffic Management) among solutions. It will address post-mission disposal and active removal techniques "ground and space based", review potential solutions and identify implementation difficulties.

A6.6: Post Mission Disposal and Space Debris Removal 2 - SEM: Jankovic – Grishko – Forshaw

This session will focus on the Remediation part of the SEM, dealing with ADR (Active Debris Removal), JCA (Just in time Collision Avoidance), LDTM (Large Debris Traffic Management) among solutions. It will address post-mission disposal and active removal techniques "ground and space based", review potential solutions and Identify implementation difficulties.

A6.7: Operations in Space Debris Environment, Situational Awareness - SSA: Martinot – Kelso – Rachit – Sanchez-Ortiz

This session will address the multiple aspects associated to STM (Space Traffic Management) and SSA (Space Situational Awareness) including safe operations in space dealing with Space Debris, operational observations, orbit determination, catalogue build-up and maintenance, data aggregation from different sources, relevant data exchanges standards and conjunction analyses.

1.5. Space Debris Symposium for Milano 2024

A6.8 / E9.1 (joint with Space Security Committee): Political, Legal, Institutional and Economic Aspects of Space Debris Mitigation and Removal - STM Security

From SDC: Spencer – Masson-Zwaan – Kerr From SSC: Plattard – Soucek

This session will address all non-technical aspects of Operations and Security in a Debris Dominated Environment. This STM session will mainly include the non-technical aspects of space debris mitigation and removal. Political, legal and institutional aspects include role of IADC and UNCOPUOS and other multilateral bodies. Economic issues include insurance, financial incentives and funding for space debris mitigation and removal. The role of international cooperation in addressing these issues will be considered

A6.9: Orbit Determination and Propagation - SST

Siminski – Dolado-Perez – Marzioli

This session will address every aspect of orbit determination coming from the SST (Space Surveillance and Tracking), related to assessment of raw and derived data accuracy, optical measurements processing and modelling and risk analysis of space debris

A6.10 Space Debris: Space carrying capacity assessment and allocation

Possibly joint with E9.4: **Peter Martinez** (could act as co-chair already spoke to him) From SDC: Schildknecht – McKnight – Colombo From XXX: SEE the PDF attached to the email

A6.IP: Interactive Presentations, Kerr – Letizia – Marzioli - Opromolla – Jankovic – Bonnal

1.5. Space Debris Symposium for Milano 2024

General messages on A6 Space Debris:

What about the Joint Session A6.10?

- 2022: E10.2 NEO 7 abstracts 6 presentations
- 2021: B6.5 Space Operations 13 abstracts, 22 participants
- 2020: B6.5 Space Operations 11 abstracts
- 2019: B4.10 Small Satellites 14 abstracts, 59 participants
- 2018: C1.7 Astrodynamics 12 abstracts, 60 participants
- 2017: B4.10 Small Satellites 12 abstracts, 55 participants
- 2015: YPVF Young Professionals Virtual Forum 7 abstracts, 5 participants (2 presenters + 2 chairs + 1 lost in the room...)
- Good suggestion made during the Spring meeting:

Joint Session with E6 "IAF Business Innovation Symposium"; contact point Ken Davidian

Topic "How to make money with Space Debris?" or anything similar... "Debris and Economics??"

⇒ First contacts did not lead to any concrete action... May be to late... Maybe just another "regular" debris session...

What shall we do?

Joseph P. Loftus Jr. IAC A6 lecture

- Not done again in Baku; need first for feedback from Paris
- What should be the selection strategy? Should we write Terms of Reference? Question is not solved will come back later

Invited Keynote Lectures included in Technical Sessions: please propose if relevant

2. Exchanges

- 2.1. Past events: workshops, conferences, congresses, ...
- 2.2. On the Agenda
- 2.3. General information
- 2.4. Round table Open discussion

Save the date

NUCIPATIVITY

TOWARDS A ZERO DEBRIS FUTURE

Day: Monday 2 October Time: 15:30 - 16:15 AZT (GMT+4) Location: Heydar Aliyev Center (HAC) Auditorium

This panel is driven by the shared concern about the continuing degradation of the outer space environment which puts space activities evermore at risk and, consequently, the need for more ambitious actions on space debris mitigation and remediation from all stakeholders. Heads of agencies are invited to highlight their views and measures on space safety and sustainability. The goal of the panel would be to identify collective efforts of a community of proactive actors towards jointly defined ambitious, meaningful and measurable targets by 2030. ESA's recently announced zero-debris charter will be introduced and discussed as a vehicle to drive joint ambitions in this field.

Organized by:

The European Space Agency (ESA) is organising the 2023 Clean Space Industry Days. The event will take place from 16th to 20th October 2023 at ESTEC, The Netherlands.

International Academy of Astronautics

2. Exchanges

ESA announces the Zero Debris Charter initiative

The 7th International Workshop on Modeling & Remediation, CNES HQ, 10th to 12th June 2024

□ The fourth IAA Conference on Space Situational Awareness (ICSSA) to be held in **Daytona Beach**, **FL**, USA. The conference will take place on **May 08-10, 2024**.

2nd International Orbital Debris Conference (IOC II) December 4-7, 2023 Sugar Land, Texas

2. Exchanges

2.4. Round table – Open discussion

We need to update the IAA Situation Report on Space Debris A plan to update the document will be discuss durinf the next spring meeting

Agenda

3.1 SG 5.17 IAA Situation Report on Space Debris – Update

Initial volunteers and currently available sections

Responded?	Contributor	Email	Contribution offered	Existing draft
Yes	Manuel Metz	Manuel.Metz@dlr.de	summary on European Countries and especially the EUSST Consortium for the Appendix of the Report	Not yet
Yes	Balbir Singh Dr. A K Anilkumar	balbir.s@manipal.edu ak_anilkumar@isro.gov.in	ISRO India	isro_IAA_note.pdf
Yes	Tanya Masson Olga Volynskaya	aoerjia88@mail.ru t.l.masson@law.leidenuniv.nl		11. Legal_updated_clean_23 Mar 2022 (CLEAN)
Yes	Roberto Opromolla Marko Jankovic	<u>roberto.opromolla@unina.it</u> marko.jankovic@dfki.de		IAA Space Debris Situation Report 2019 - SG 5_17- Debris Remediation Chapter - ThirdDraft_RO_MJ_03122021
Yes	Christophe Darren	<u>darren@leolabs.space</u> christophe.bonnal@cnes.fr	several sections	Not yet
To be contacted	Nicolas Berend		Remediation (overlap with Opromolla and Jankovic)	Not yet
yes	Juan Carlos Dolado Perez	Juan-Carlos.DoladoPerez@cnes.fr		8. Future environment_last_report_working_doc_ v4
yes	Frank Schafer	Frank.Schaefer@emi.fraunhofer.de	HVI	Not yet

Agenda

3.1 SG 5.17 IAA Situation Report on Space Debris – Update

Distribution of tasks and sections that came later on

0.	Executive Summary & Table of Contents 🖻 Darren and Christophe					
1.	Introduction 🗢 Darren and Christophe					
2.	Current status (12 pages) ⇔ Need for someone who masters MASTER-ORDEN	∕l or equivaler	nt, so	preferably ESOC + N	IASA + Russia ? Japan ?	
3.	Measurements (13 pages) and 4. SSA (16 pages)		Noelia	Sanchez Ortiz	Thomas Schildknecht	
	Could be merged into a unique chapter explaining the "how it works"					
	Description of the SSA systems themselves placed in an Annex	Dan Oltrog	ze			
	Strong wish to have extra systems, mainly ESA, EUSST, China, Australia,					
	Personal opinion: no significant effort to update, fundamentally structure	of the chapte	ir			
5.	Collision Avoidance (6 pages) ⇔ Easy to update, potentially to be completed	with new tech	nniques and mod	lern examples D, Fir	ikleman & Dan Oltrogge	
6.	HVI and Protection (13 pages) ⇔ Only minor points to update					
7.	Reentering Space Objects (16 pages) ⇔ Only some statistics to update	Dr. A K Anill	kumar & Marlon	E Sorge		
8.	Future Orbital Debris Environment (11 pages) ð Obviously a bit more work to	do J ChB	and DmcK contr	ibutions & Marlon E	Sorge	
	Updates of statistics					
	Inclusion of Small-sats and Constellations					
	However, most of the IADC WG2 derived work can be reused, unchanged					
9.	Mitigation (9 pages) ⇔ Mostly upd <mark>ate, ChB and DmcK contributions</mark>	D. Finklema	in			
	Well known to members of International Standards Working Groups					
	Important to update the summaries of PMD practices					
10.	Debris Remediation (12 pages) ð Darren and Christophe + Normanl					
11.	Legal (9 pages) 🛱 Update already done last year by Tanja; to be re-read					
4.7	International (6 pages) 🗢 To be restructured, easy. Christophe					
12.		ped with \$12	some can be de	leted due to duplicat	tions Christoph D. Finkleman	
13.	Synthesis & Further References (7 pages) ⇔ To be restructured, partially mer	Bed midt 3 Tri				
13.	endix (3 pages) ⇔ Currently	Dea mar Jaz,				
13.		Bee Hier Jre,				