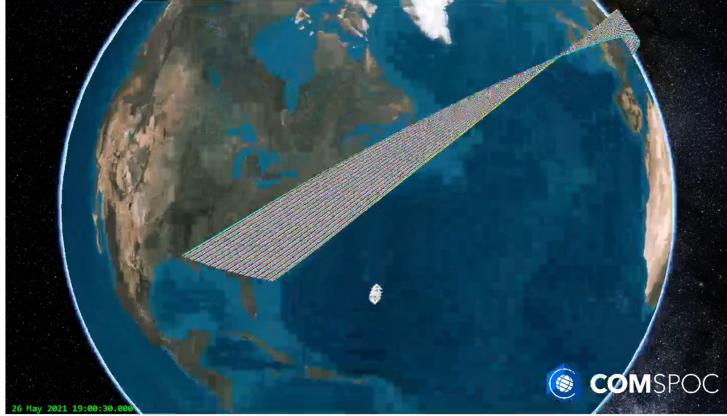
Analysis and Visualization for Orbit Insertion Deconfliction (AVOID)

Dan Oltregge (dan@comspoc.com)

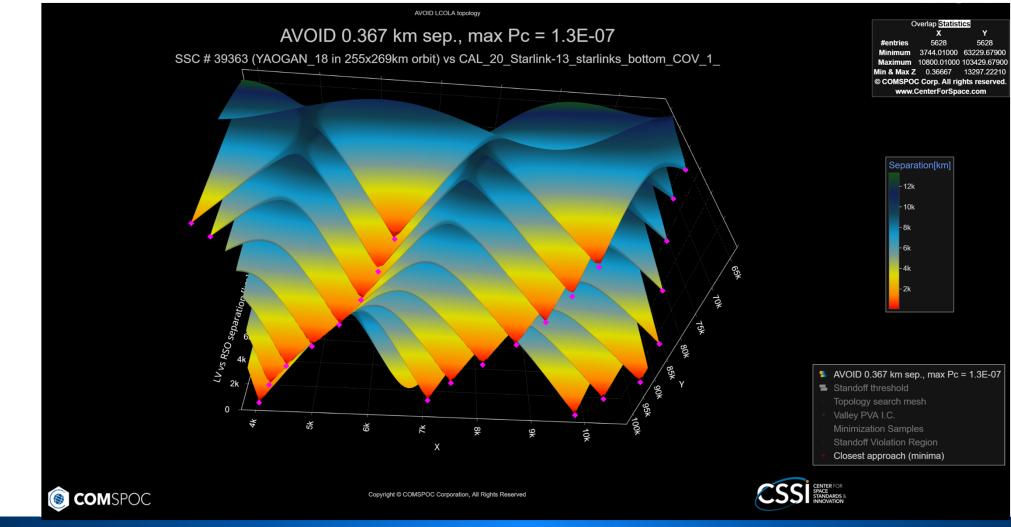
Sal Alfano (salfano@comspoc.com)

Typical "Discretized" LCOLA process

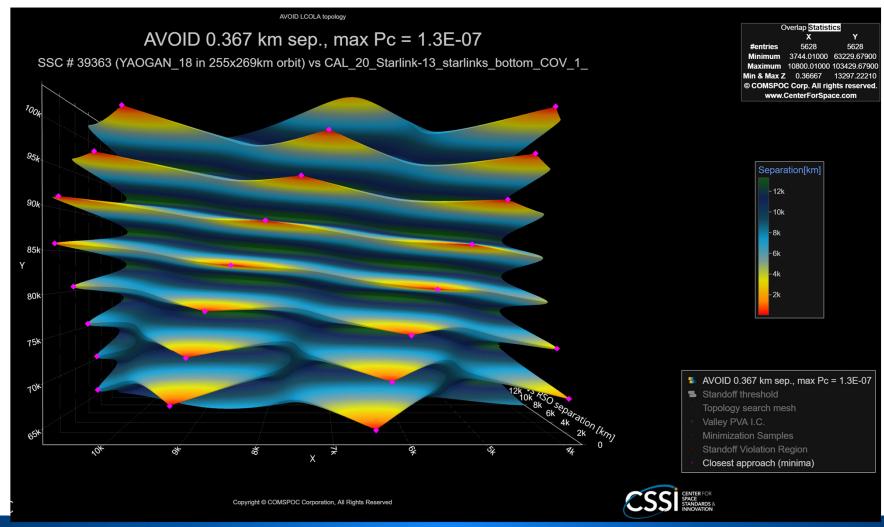
- Filters out secondaries based upon perigee and apogee of launched/deployed objects
- Digitally sample times across launch window ("Top of the minute", 10 sec, 1 sec, etc.)
- For each sampled time:
 - Transform launch trajectory to inertial frame
 - Identify close approach to secondaries and report launch closures
- Assimilate all results to create integrated set of closure intervals

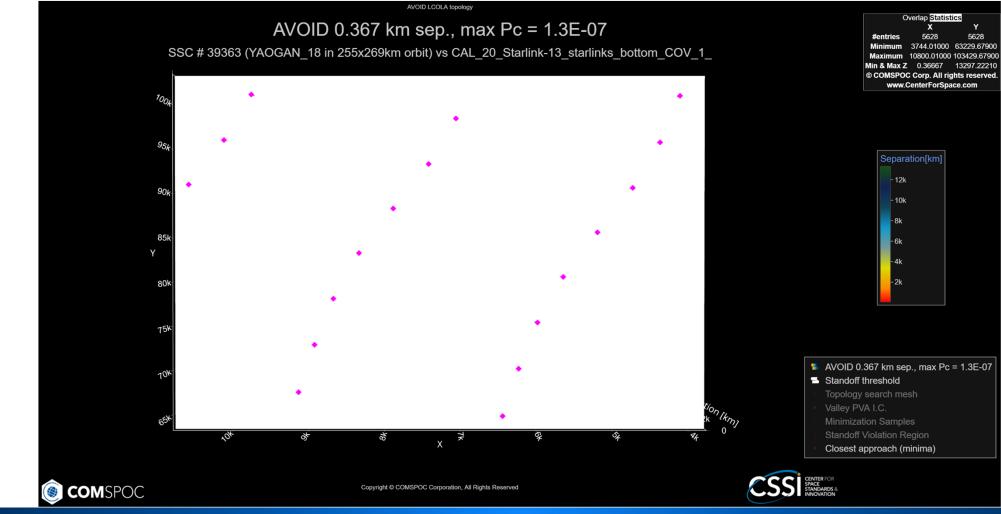

Step size:	60 sec	10 sec	1 sec	0.5 sec
Time (20 min LW)	¹⁄₄ min	1.5 min	18.6 min	43.4 min
Time (12 hr LW)	0.16 hr	0.96 hr	11.18 hr	26.04 hr

- Assessed 26 May Starlink launch (11 launch trajectories)
 - 850 standoff and 53 Pc violations found (valid for ANY launch time)
 - Run took 20 min for SP Ephem I/O and 7 min for CA screening on standard Dell lapt

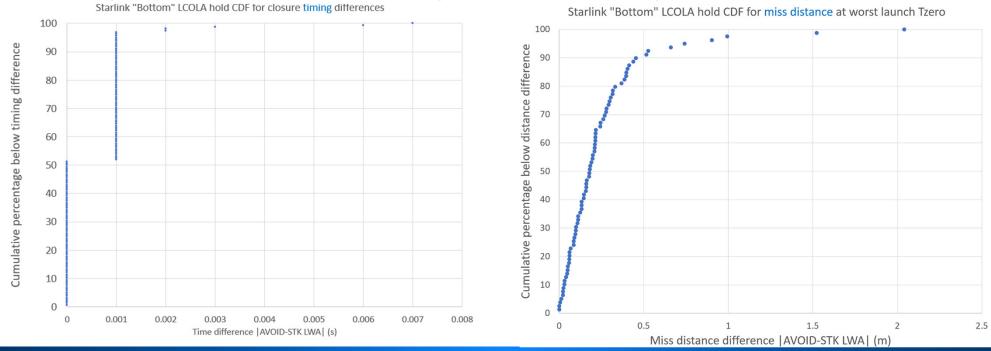


Launch "Fan" discretization approach


 Typical LCOLA tools discretize launch time – yet analyses indicate that a very tiny time step would <u>be required not to miss LCOLA violations</u>.



Summary


- Typical LCOLA approaches discretize launch window.
 - Conjunction threats easily missed if step size is not extremely small.
 - Very long analysis runtimes prevent "any time launch."
- Topology-based LCOLA approach (AVOID) has the following traits:
 - Maximizes launch window availability;
 - Accommodates all deployed objects (can even model ships, air traffic, UAVs, airships, hypersonics);
 - Scalable parallel processing and topologies for rapid assessment;
 - LCOLA screening for miss distance, collision probability or both;
 - Screens entire launch window, unconstrained to "top-of-the-minute" or discretized launch times;
 - Tests covariance for positive-definiteness and remediates if necessary;
 - Post-processing accommodates "top-of-the-minute" or other constraints;
 - Assembles a single set of launch holds for the launch director/team;
 - Verified against both STK LWA and STK AdvCAT.

Comparison with STK Launch Window Analysis (LWA)

Topology-based LCOLA tool extensively compared with AGI's LWA Tool

- Window closure times are within ten milliseconds
- Close approach distances less than a few meters
- Convergence tolerances are user-configurable in both tools (AVOID + LWA)

Comparison with STK AdvCAT product

- STK AdvCAT heavily verified and used operationally for flight safety and analysis
- Another independent check: Used AdvCAT on launch trajectories epoched to AVOID launch closure times for both distance-based and probability-based thresholds.

 Sample compar AVOID: 	MET-CA [s after T- 0]	Dist Entr y (km)	Dist Closes t (km)	Dist Exit (km)	Pc Entry	Pc (worst T- 0)	Pc Exit
	4941.8	25	.304	25	1.0e-7	3.85e-6	1.0e-7
 STK AdvCAT: 	10298 6 MET-CA [s after T- 0]	25 Dist Entr y (km)	Dist Closes t (km)	25 Dist Exit (km)	1 Op-7 Pc Entry	2 68e-6 Pc (worst T- 0)	1 Op.7 Pc Exit
	4941.8	25	.304	25	1.04e-7	3.85e-6	9.708e-8
COMSPOC	10298.6 Copyright © C	25 omspocie	.366 orporation. All r	25 ights reserv	1.01e-7	2.68e-6	1.02e-7

The LCOLA process

• Given:

- Launch window, e.g., 28 Jan 21 00:00:00 UTC to 28 Jan 21 05 00:00:00 UTC
- Launch (or "primary") trajectory(ies)
 - Orbital stages, anticipated failure modes, all deployed objects
 - Expressed in the Earth Fixed frame as function of MET (Mission Elapsed Time)
- On-orbit (or "secondary") objects

• Goal:

- Compute "Launch Closure" or "Hold" within launch window when:
 - Relative range < keepout threshold
 - Collision probability > keepout Pc threshold

